Issues and Considerations for SIDIS

SoLID Collaboration Meeting August 19-20, 2013

Haiyan Gao
Duke University
Durham, NC, U.S.A.

SoLID-Spin: SIDIS on ³He/Proton @ 11 GeV

SoLID CLEO SIDIS

E12-10-006: Single Spin Asymmetry on Transverse ³He @ 90 days, **rating A**

E12-11-007: Single and Double Spin Asymmetry on ³He @ 35 days, rating A

E12-11-108: Single and Double Spin Asymmetries on Transverse Proton @120 days, rating A

Key of SoLID-Spin program:

Large Acceptance

- + High Luminosity
- → 4-D mapping of asymmetries
- → Tensor charge, TMDs ...
- → Lattice QCD, QCD Dynamics, Models.

SoLID CLEO SIDIS

Requirement of SIDIS

- Kinematics Coverage:
 - 0.05 0.6 in x (valence)
 - 0.3 0.7 in z (factorization region)
 - P_T up to ~ 1 GeV (TMD Physics)
 - Fixed target → Q² coverage 1-8 GeV²
 (~ 2 GeV² in ΔQ² at fixed x)
- Luminoisity:
 - Unpolarized ~ 10³⁷ N/cm²/s
- Polarized ³He Target:
 - ~ 60% higher polarization
 - Fast spin flip (<20 mins)
- Electron PID:
 - <1% Pion contamination (asymmetry point of view)</p>
- Pion PID:
 - <1% Kaons and Protons</p>
 - <1% electron contamination</p>

Modified from X. Qian's slide

- Optics of Reconstruction:
 - < a few % in δ P/P.
 - < 1 mr in polar angle.</p>
 - < 10 mr in azimuthal angle</p>
 - ~ 1-2 cm vertex resolution
- Polarized NH₃ target
 - JLab/Uva target with upgraded design of the magnet
 - Target spin-flip every two hours average in-beam polarization of 70%
 - Polarized luminosity with 100nA current: 10³⁵ cm⁻²s⁻¹
 - Beamline chicane to transport beam through 5T target magnetic field (g2p one?)
- DAQ:
 - ~ 3kHz Physics Coincidence
 - ~ 200 kHz Single electron
 - ~ 50 kHz Coincidence
 - Limits: 300 MB/s to tape.

Special Considerations

Uniformity:

- E.g. Design of Detector Support Structure to minimize holes in acceptance (especially in azimuthal angle)
- Backgrounds in Detectors
- Radiation:
 - Design of Detector front end electronics and calorimeter
 - Minimize radiation damage
 - Maximize radiation hardness of design.
- Multiple New Detectors:
 - Need dedicated time to <u>commission</u> detectors and system integration.
 - Multiple/Staged beam tests needed for detector R&D.
 - Detailed Integration Plan.

- Mechanical Design:
 - Compact
 - Detector maintenance
 - Cable layout
 - Switch between different configurations:
 - Transverse vs. Longitudinal
 - SIDIS vs. PVDIS
 - Alignment
- Procedure of quick establishment of detector performance:
 - Position of Tracking detectors
 - Energy response in Calorimeter
 - Background/Gain in Gas Cerenkov
 - Physics asymmetry in single hadron, and zero PV will help in this.

Potential Issues

- Hadron pid (simulations ongoing)
- Pid detectors in open geometry (more realistic simulations)
- trigger signal splitting issue (ongoing study for PVDIS)
- Will single trigger work? (both coincidence and single triggers discussed)
- Large angle detectors (optimization)

- Sheet of flame (NH₃)
 - GEM and gas Cherenkov
 OK from preliminary
 studies, more studies
 - Studies for calorimeter and impact on trigger needed
- Photon suppression (scintillator plane before preshower)
- Tracking
 - Progressive tracking
 - Tree search
- GEM resolutions