Light Gas Cherenkov Detector for SoLID

1

E. Kaczanowicz, Z.-E. Meziani, <u>M. Paolone</u>, N. Sparveris

Temple University

SoLID Dry Run Nov 7th 2014

- The LGC is designed to accommodate two primary configurations:
 - SIDIS

- Each configuration has different:
 - incident particle angle / momentum ranges
 - Iuminosity
 - background profiles
 - space constraints

 Goal is to have each configuration provide a pion rejection above 99% when combined with the calorimeter.

- PVDIS

- The LGC is designed to accommodate two primary configurations:
 - SIDIS
 - 1 to 5 GeV
 - ~7 to 15 deg

- Each configuration has different:
 - incident particle angle / momentum ranges
 - Iuminosity
 - background profiles
 - space constraints

- PVDIS
 - 2 to 4 GeV
 - 22 to 35 deg
- Goal is to have each configuration provide a pion rejection above 99% when combined with the calorimeter.

- The LGC is designed to accommodate two primary configurations:
 - SIDIS
 - 15uA on ³He

- Each configuration has different:
 - incident particle angle / momentum ranges
 - luminosity
 - background profiles
 - space constraints

- PVDIS
 - 50uA on D / H

 Goal is to have each configuration provide a pion rejection above 99% when combined with the calorimeter.

- The LGC is designed to accommodate two primary configurations:
 - SIDIS
 - Forward Calorimeter
 - Additional Gems

- Each configuration has different:
 - incident particle angle / momentum ranges
 - Iuminosity
 - background profiles
 - space constraints

- PVDIS
 - Baffles
- Goal is to have each configuration provide a pion rejection above 99% when combined with the calorimeter.

- The LGC is designed to accommodate two primary configurations:
 - SIDIS

- Each configuration has different:
 - incident particle angle / momentum ranges
 - Iuminosity
 - background profiles
 - space constraints

- PVDIS
 - Baffles

 Goal is to have each configuration provide a pion rejection above 99% when combined with the calorimeter.

LGC geometric / material characteristics

• Cherenkov is designed to maximize component use between the two configurations.

- 30 sectors (defined by baffle segmentation)
 - 2 spherical mirrors per sector (60 mirrors total)
- Blanks are Carbon Fiber Reinforced Polymer [CFRP] (Same as • LHCb RICH)
 - Areal density < 6 kg/m² —
 - Reflective coating provided by Stony Brook (AI / MgF₂)
 - Total reflective area per mirror is roughly 0.3 m² Common

Mirrors

5

LGC Position and Mounting

 The LGC will be directly mounted to the back of the magnet support, and will not wheel-out with the snout assembly.

Magnet housing

LGC

Snout Assembly

LGC Position and Mounting

• The LGC will be directly mounted to the back of the magnet support, and will not wheel-out with the snout assembly.

LGC Position and Mounting

- The LGC will be directly mounted to the back of the magnet support, and will not wheel-out with the snout assembly.
- Six total internal support struts are designed to avoid interference with optical photon collection.

- All components are common without adjustment between both configurations.
- PMT assembly is:
 - 3 x 3 array of Hamamatsu H8500C-03 maPMTS
 - 64 pixel PMT array for each H8500C
 - Average QE ~ 15%
 - 2" by 2" per H8500C-03

- All components are common without adjustment between both configurations.
- PMT assembly is:
 - 3 x 3 array of Hamamatsu H8500C-03 maPMTS
 - Reflective cone
 - Standard glass cone
 - 30cm tall, inner radius = 7.6cm, outer radius = 21cm, ~0.5cm thick.
 - polished and coated to maintain a reflectivity > 80%.

Model representation. Approximate size of reflective cone

- All components are common without adjustment between both configurations.
- PMT assembly is:
 - 3 x 3 array of Hamamatsu H8500C-03 maPMTS
 - Reflective cone
 - Mu-metal shielding.
 - 0.04" thickness with 0.125" thick steel reinforcement
 - Reduce B_T and B_L from 95 and 135 gauss (respectively) to < 50 gauss.
 - Maintains at least 90% efficiency (see talk by M. Meziane)

- All components are common without adjustment between both configurations.
- PMT assembly is:
 - 3 x 3 array of Hamamatsu H8500C-03 maPMTS
 - Reflective cone
 - Mu-metal shielding.
 - 0.04" thickness with 0.125" thick steel reinforcement
 - Reduce B_T and B_L from 95 and 135 gauss (respectively) to < 50 gauss.
 - Maintains at least 90% efficiency (see talk by M. Meziane)

9

Simulation for pi rejection

• Event generation:

- Electrons from electron generator eicRate.
- Pions from eicRate (Wiser)
- Uniformly distributed along target length.
- Propagate tracks out of target to LGC window
 - All interactions are handled by GEMC / Geant4
 - All materials from SoLID design are included in the transport.
 - CLEO magnetic field map is used.
- Simulate Cherenkov radiation through gas and collect optical photons.
 - Collection is recorded at the PMT on a p.e. per pixel level.
 - QE as a function of photon energy is taken into account.
 - Pion triggers below Cherenkov threshold are primarily from delta rays.

Total Collection Efficiency for Electrons

- Calculated as # optical photons detected at PMT divided by # of reflections from spherical mirrors. Includes:
 - Reflection efficiencies

11

- Quantum efficiency (dominant)
- Geometrical acceptance

Pion / electron signal

• Sample of collected PE signal:

(This MC is for track momentum below pion radiation threshold)

- Three settings possible pion rejection setting shown:
 - Nominal
 - Best compromise between electron efficiency and pion rejection.
 - 0.9 Nominal
 - Electron efficiency now 90% of nominal above.
 - 0.8 Nominal
 - Electron efficiency no 80% of nominal above

Secondary backgrounds

- All pion rejection shown on previous slides only considers the primary source of pion contamination from charged pion production at the beam / target nucleon vertex (via Wiser)
- Other sources of background come from secondary particle production.
 - Secondary background simulation is done by putting an 11 GeV electron beam on target in GEMC / Geant4.
 - 200M events are simulated per "pass" on the ifarm.
 - This equates to 0.64 micro-seconds of beam.
 - Geant4 physics list QGSP_BERT controls all EM / hadronic reactions.

 High luminosity + large acceptance = large rates

17

- High rates can be handled, but care must be taken!
- Total rate through the LGC window for PVDIS.
 - Integrated over all momentums.

- Rate through the LGC window.
 - Only cherenkov radiation candidates.

Energies > LGC threshold

- (10 MeV gamma/electrons)
- (3 GeV pions)
- (2.4 GeV muons)
- (11 GeV kaons)

- Where does the majority of the electromagnetic radiation come from?:
 - pi0's!
 - Geant4 physics lists and Wiser predictions give very different rates of pi0 production at SoLID momentums and angles.

Comparison between Wiser and Geant4

All momentums

Comparison between Wiser and Geant4

Momentums greater than radiation threshold

What estimate to use?

- Which estimate is best?
 - Geant4 likely underestimates rate.
 - Wiser likely overestimates rate.
- Further testing (and comparison to experimental results) is needed.

What effect does this have on the LGC rate (PVDIS)?

- For a trigger with 2 photoelectrons in 2 different PMTs in a given sector:
 - Geant4 rate: ~ 1-2 Mhz/sector (Within DAQ capabilities)
 - Wiser rate: ~ 5-6 Mhz/sector (Pushing DAQ)

What effect does this have on the LGC rate (SIDIS)?

- The SIDIS rate is much more manageable:
 - Wiser rates are in the 10's of kHz/sector

WAVELENGTH (nm)

19

QE peaks between 300 to 400 nm at about 30%

QE peaks between 300 to 400 nm at about 30%

Wavelength Shifting!

WAVELENGTH (nm)

Quantum Efficiency

TPMHB0842FA

19

Wavelength Shifting!

WAVELENGTH (nm)

Quantum Efficiency

TPMHB0842FA

19

WAVELENGTH (nm)

• Wavelength shifter for PMTs:

19

 Temple is currently coating and testing the clas12 LGCC PMTs with p-Terphenyl.

Coating apparatus

Face plate coating:

Before and after

Wavelength shifting gains

Continuing Improvements: PE pattern analysis

- Pattern of photoelectron signal could be recorded (binary signal per pixel) with a MAROC chip.
- Binary output together with pattern recognition could provide limited tracking information.
 - Possibly useful for background suppression or better pion rejection.

Prototyping

- 1st stage (Pre-R&D)
 - maPMT / DAQ testing
 - small Cherenkov tank
 - With electron source \rightarrow test more realistic PMT response.
 - Ideally with a single aluminized / polished CFRP mirror
- 2nd stage (1st 2nd year DOE)
 - Construction of 1/6th of total SoLID detector.
 - 5 combined sectors → to be used in final detector.
 - Prototype 1/6th size tank.

Conclusion

- The SoLID LGC is designed to meet the requirements of the SIDIS and PVDIS experimental programs while maximizing inter-component use (minimizing cost).
- Extensive GEMC / Geant4 simulations have been performed testing signal, backgrounds, and pion rejection.
- Continuing efforts to study (and reduce) simulated EM / hadronic backgrounds.
- Wavelength shifting and PMT pixel pattern analysis are being investigated and may lead to even better LGC performance.

PVDIS

SIDIS

Trigger Efficiencies

PMT in Magnetic Field

Photons direct on PMTs

- Non-optical photons that interact with the maPMTs may also cause some background.
 - First step: Simulate the rate of these photons incident on the PMTs:
 - Two obvious peaks.

18

- Neutron capture with hydrogen in carbon fiber mirrors.
- e+ e- annihilation
- Low energy photon rate still dominated by electron production.

Photons direct on PMTs

- Non-optical photons that interact with the maPMTs may also cause some background.
 - First step: Simulate the rate of these photons incident on the PMTs:
 - Two obvious peaks.
 - Neutron capture with hydrogen in carbon fiber mirrors.
 - e+ e- annihilation
 - Low energy photon rate still dominated by electron production.

