

Study for SoLID Baffle, Background and Trigger Rate

Zhiwen Zhao JLab&ODU, UVa 2014/11/07

SoLID (Solenoidal Large Intensity Device)

- Unique device combines large acceptance and high intensity
- Optimize the design accordingly

Estimation of Radiation and Luminosity

	PVDIS	SIDIS ³ He
Beam	50uA	15uA
Target	LD2 40cm	10amg He3 40cm
Window	Al 2*100um	Glass 2*120um
Radiation length (target)	5.4e-2	0.8e-3
Radiation length (window)	2.25e-3	3.4e-3
Radiation length (total)	5.6e-2	4.2e-3
Luminosity (target)	1.27e39	3e36
Luminosity (window)	1e37	3.7e36
Luminosity (total)	1.27e39	6.7e36
Design	baffle	target window collimator

PVDIS Baffle

1st to 11th, 9cm thick lead plane each

Placed right after the target, enough material to block photons, pions and secondary particles.

x(cm)

x(cm)

4

PVDIS Baffle

12th, 5cm lead plane (EC photon block)

High energy electrons have least bending, only separate from photons before EC

hits behind 11th baffle (black(-),red(0),blue(+))

hits before FAEC (black(-),red(0),blue(+))

PVDIS Baffle: Impact on e(DIS)

- e(DIS) flat ~30%
 acceptance at high P
 and high x
- Ensure good FOM

Uncertainty (%) with 120 days of 85% polarized 50uA electron beam on 40cm LD2 tard

6

Х

PVDIS Baffle: Impact on Background

EM background on FAEC reduce by factor 20 - 30

SIDIS ³He Target window Collimators

- A pair of Tungsten collimators are optimized to block both low energy EM particles and hadrons from target windows into forward angle detectors
- The accepted particles at forward angle and large angle EC are shown with (red) and without (black) the collimators

Background Study Procedure

- SoLID full setup in GEMC (Geant4) with realistic materials
- EM background produced from 11GeV e- on different targets, according to the physics models in Geant4
- Hadron background, generated from event generators (Wiser fit) on both target and target windows, then passed into GEMC to produce secondary particles according to the physics models in Geant4

Trigger Rate Study Procedure

- Use simulation results from the background study
- Different detectors with trigger conditions
- Estimate trigger rate from individual detectors
- Estimate random coincidence trigger rate from a set of detectors

PVDIS FAEC Radius-dependent Trigger

40

θ, deg

SIDIS ³He FAEC Radius-dependent Electron Trigger

Radius(cm) P Threshold (GeV)

- 90 105 5.0
- 105 115 4.0
- 115 130 3.0
- 130 150 2.0
- 150 200 1.0
- 200 230 2.0

6 point cut, right on Q2=1 line

All track that can reach EC

(GeV)

Energy

PS-E/p cut efficiency

e(DIS) acceptance for SoLID CLEO and 40 long target

Acceptance of DIS Tracks

pion eff. VS Mom

e eff. VS Mom

¥ ¥ ¥ ¥

Momentum (GeV)

Momentum (GeV)

PVDIS FAEC Trigger Rate

region	full	high	low	
rate entering the EC (kHz)				
e^-	413	148	265	
π^{-}	$5.1 imes10^5$	$2.7 imes10^5$	$2.4 imes10^5$	
π^+	$2.1 imes 10^5$	$1.0 imes 10^5$	$1.2 imes 10^5$	
$\gamma(\pi^0)$	$8.4 imes10^7$	$4.2 imes10^7$	$4.3 imes10^7$	
p	$5.5 imes10^4$	$2.4 imes10^4$	$3.1 imes10^4$	
sum	$8.5 imes10^7$	$4.2 imes10^7$	$4.3 imes10^7$	
trigger rate for $p > 1$ GeV (kHz)				
e^-	321	80	231	
π^{-}	$4.8 imes10^3$	$3.4 imes10^3$	$1.4 imes 10^3$	
π^+	$0.28 imes 10^3$	$0.11 imes 10^3$	$0.17 imes 10^3$	
$\gamma(\pi^0)$	4	4	0	
p	$0.18 imes 10^3$	$0.10 imes 10^3$	$0.08 imes 10^3$	
sum	$5.6 imes10^3$	$3.7 imes10^3$	$1.9 imes10^3$	
trigger rate for $p < 1$ GeV (kHz)				
sum	$(3.1 \pm 0.7) \times 10^3$	$(1.6 \pm 0.4) imes 10^3$	$(1.5\pm0.4) imes10^3$	
Total trigger rate (kHz)				
total	$(8.7 \pm 0.7) \times 10^3$	$(5.3 \pm 0.4) \times 10^3$	$(3.4\pm0.4) imes10^3$	

PVDIS Trigger Rate

- PVDIS setup has 30 sectors, rates below are for one sector
- 0.276MHz EC trigger rate
- 2MHz Cherenkov trigger rate
- Radom coincidence trigger rate combining EC and LGCC within a 30ns window

16.6 kHz = 0.28MHz*2Mhz*30e-9ns

- PVDIS physics rate is about 10.4kHz
- Total rate 27kHz

SIDIS ³He FAEC and LAEC Trigger Rate

region	FAEC	LAEC		
rate entering the EC (kHz)				
<i>e</i> ⁻	93.4	18.7		
π^{-}	5.36×10^3	$1.55 imes 10^4$		
π^+	5.96×10^3	$1.66 imes 10^4$		
$\gamma(\pi^0)$	1.52×10^5	2.43×10^5		
$e(\pi^0)$	6.52×10^3	2.04×10^3		
p	1.86×10^3	6.16×10^3		
electron trigger rate (kHz)				
<i>e</i> ⁻	74.2	11.68		
π^{-}	500	5.16		
π^+	548	5.12		
$\gamma(\pi^0)$	896	12.5		
$e(\pi^0)$	43	0.14		
p	109	2.15		
sum	2170	36.75		
MIP trigger rate (kHz)				
<i>e</i> ⁻	93.4			
π^{-}	5240			
π^+	5800			
$\gamma(\pi^0)$	6760			
$e(\pi^0)$	772			
p	1732			
sum	2×10^4			

SIDIS ³He Trigger Rate

Within a 30ns widow, reduction factors are LGCC ~50 (pion,proton) MRPC+FASPD ~20 (gamma) LASPD ~10 (gamma)

- FAEC electron trigger rate 2170 kHz -> 129.7 kHz (LGCC and MRPC+FASPD)
- LAEC electron trigger rate 37 kHz -> 25.5 kHz

(LASPD)

- FAEC charged particle (MIP) trigger rate
 20 MHz -> 14 MHz
 (MRPC+FASPD)
- Radom coincidence trigger rate combining electron and charged particle trigger within a 30ns window
 65.2kHz = (129.7+25.5)kHz*14MHz*30ns
- SIDIS physics rate is 6kHz
- Total rate 72kHz

Summary

 Both SoLID SIDIS and PVDIS setups are designed to handle the required luminosity

 It could be extended to other physics which needs such luminosity