
SoLID Software Framework

Ole Hansen

Jefferson Lab

SoLID Collaboration Meeting
January 13, 2016

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 1 / 10

General Considerations

Maximize consistency: Framework should support all of simulation,
digitization, reconstruction and physics analysis
Must support multi-pass processing: output → input for next pass
Support multiple analysis chains per job, e.g.

I Investigate different tracking or PID schemes
I Run several physics analyses in parallel

Interactive analysis must be possible with ROOT
DSTs should contain extensive metadata, e.g.

I Database parameters from previous stages (geometry etc.)
I Data provenance

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 2 / 10

User-Written Components

Data Producer

Input
Data 3

Input
Data 1

Input
Data 2

Output
Data 1

Output
Data 2

Config Data producers (algorithms)
I Ideally, single algorithm per module
I Run-time configurable
I Must be reusable without recompilation → multiple instances allowed,

differing in configuration
Data objects (results)

I transient or persistent
I separate from producers
I may reference other data objects
I should hold metadata about their origin

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 3 / 10

Analysis Chains

Track
Cand-
idates

Track
Tests

Track
Finder

Tracker
Clusters

Calo
Clusters

GEM Hit
Cluster
Finder

Tracker
Hits

Calo
Cluster
Finder

Calo
Hits

Track
Fitter

Conf=A

Fitted
Tracks

“A”

Track
Fitter

Conf=B

Fitted
Tracks

“B”

Track
Cand-
idates

Modules communicate exclusively via data objects
Module relationships configurable at run time by selecting from available
compatible input data objects (by name, class, instance or similar)
Support condition testing modules. Select subset of results and/or skip
further processing if certain tests fail or succeed.
Support multiple chains per job
Output modules write user-configured subset of available data objects

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 4 / 10

Software Framework Comparison (preliminary)
Feature art (FNAL) FairRoot (GSI) JANA (JLab) Fun4All (PHENIX)

Origin CMS AliRoot (ALICE) In-house In-house

First release 2009 2004 2005 1998

Experiments using framework ~9 ~10 1 1

Language C++11/14 ROOT C++ (pre STL) C++98 ROOT C++ (pre STL)

Base framework self-contained ROOT self-contained ROOT

Output, object persistency ROOT ROOT HDDM ROOT

ROOT 6 support beta no n/a no

Steering, configuration FHiCL ROOT macro command line ROOT macro

Reusable/multi-instance modules yes user no user

Multiple analysis chains yes yes limited yes

Automatic metadata, data
provenance

partly user user user

Test/filter modules yes user user user

Multithreading no (planned) no (unlikely) yes (partial) no (possible)

Installation dependencies cet-is (3.5 GB) FairSoft (2.8 GB) Xerces XML ROOT (500 MB)

Preferred installation Binary via UPD Source (GitHub) Source (GitHub) Source (GitHub)

Unit tests 425 39 (high-level) 0 0

User documentation User Guide
(500+ pages)

 Examples, Wiki Examples, Wiki,
User Guide (old)

Examples

User code reusable for SoLID little (DB, I/O) much (Panda, EIC) much (GlueX) some (PHENIX)

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 5 / 10

Example FairRoot/EICRoot Script

From Alexander Kiselev’s Sept 2015 EICRoot examples:

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 6 / 10

Equivalent art FHiCL configuration file

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 7 / 10

Choosing A Computing Model
3 minute run → 18M SIDIS events, 50 GB raw data
Assume 20 ms/event → to keep up with data taking, need 2000 cores

Single-threaded: no framework support for parallelism
I 2000 runs in parallel → 100 TB disk space for input
I ≈ 100 hours turn-around time per run
I Problems: cost & turnaround time

Multi-process: parallelism through the job scheduler
I E.g. 32 single-threaded jobs working on different event ranges of one run
I 62.5 runs in parallel → 3 TB disk space for input, 3 hours/run
I Potential problems: I/O bottlenecks (disk head thrashing), limited scalability,

complexity outsourced to job scheduler
Multi-threaded: event-level parallelism through modern CPU architecture

I Similar to multi-process, but reduced random disk access & memory footprint
I Problems: scalability limited by cores/node, code complexity

Distributed: event-level parallelism through built-in scheduler
I 1 run in real time, 0.05 TB disk space for input.
I Virtually unlimited scalability
I Potential problems: even more code complexity, network bottlenecks

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 8 / 10

Possible Multi-Threaded Architecture

Output
Thread

Output
File

Analysis Thread 1

Work
Queue

Analysis Thread 2

Analysis Thread 3

Analysis Thread N

Results
Queue

Thread Pool

Input
Thread

Input
File

Free
Queue

Thread Pool with three thread-safe queues
Queues hold working sets: event object, analysis chain & modules
Option to sync event stream at certain events (e.g. scaler events, run boundaries)
Option to preserve strict event ordering (at a performance penalty)

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 9 / 10

Conclusions

A good number of suitable frameworks on the market

Objective choice is difficult, at least on short timescale without local
expertise

Joint effort with EIC development would be beneficial if sufficient
overlap and interest

SoLID would be best served if we made a decision relatively soon and
started porting and developing algorithms

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 10 / 10

