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General Considerations

@ Maximize consistency: Framework should support all of simulation,
digitization, reconstruction and physics analysis
@ Must support multi-pass processing: output — input for next pass
@ Support multiple analysis chains per job, e.g.
> Investigate different tracking or PID schemes
» Run several physics analyses in parallel
@ Interactive analysis must be possible with ROOT
@ DSTs should contain extensive metadata, e.g.

» Database parameters from previous stages (geometry etc.)
» Data provenance
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User-Written Components

@ Data producers (algorithms)
> ldeally, single algorithm per module

Output
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» Run-time configurable

>

Must be reusable without recompilation — multiple instances allowed,
differing in configuration

@ Data objects (results)

>

>
>
>

transient or persistent

separate from producers

may reference other data objects
should hold metadata about their origin
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Analysis Chains
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Modules communicate exclusively via data objects

Module relationships configurable at run time by selecting from available
compatible input data objects (by name, class, instance or similar)

@ Support condition testing modules. Select subset of results and/or skip
further processing if certain tests fail or succeed.

@ Support multiple chains per job

@ Output modules write user-configured subset of available data objects
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Software Framework Comparison (preliminary)
Creawe oA | raimoot(cs) | aNAGiaY | Funaal e

Origin CMS AliRoot (ALICE) In-house In-house
First release 2009 2004 2005 1998
Experiments using framework ~9 ~10 1 1
Language C++11/14 ROOT C++ (pre STL) C++98 ROOT C++ (pre STL)
Base framework self-contained ROOT self-contained ROOT
Output, object persistency ROOT ROOT HDDM ROOT
ROOT 6 support beta no n/a no
Steering, configuration FHiCL ROOT macro command line ROOT macro
Reusable/multi-instance modules yes user no user
Multiple analysis chains yes yes limited yes
Automatic metadata, data partly user user user
provenance
Test/filter modules yes user user user
Multithreading no (planned) no (unlikely) yes (partial) no (possible)
Installation dependencies cet-is (3.5 GB) FairSoft (2.8 GB) Xerces XML ROOT (500 MB)
Preferred installation Binary via UPD Source (GitHub) Source (GitHub) Source (GitHub)
Unit tests 425 39 (high-level) 0 0
User documentation User Guide Examples, Wiki Examples, Wiki, Examples
(500+ pages) User Guide (old)
User code reusable for SoLID little (DB, 1/0) much (Panda, EIC) much (GlueX) some (PHENIX)
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Example FairRoot/EICRoot Script

From Alexander Kiselev's Sept 2015 EICRoot examples:

Ole Hanse

void reconstruction()

// Load basic libraries;
gROOT->Macro("SYMCWORKDIR/gconfig/reotlogon.C");

// Create generic analysis run manager; configure it for track reconstruction;
EicRunAna *fRun = new EicRunAna{);

fRun->SetInputFile ("simulation.root");

fRun->AddFriend ("digitization.root");
fRun->SetQutputFile("reconstruction.root");

/4 Call "ideal" hit-to-track asseociator routine;

EicIdealTrackingCode* idealTracker = new EicIdealTrackingCode();
idealTracker->AddDetectorGroup("FWDGT");

// Add a bit of fairness to the reconstruction procedure; smear "ideal"
// momenta by 10% relative before giving hit collection over to KF fitter;
idealTracker->SetRelativeMomentumSmearing(0.1);

// Also smear a bit "ideal" vertex;

idealTracker->SetVertexSmearing(8.61, 0.01, 0.01);
fRun->AddTask(idealTracker);

// Invoke and configure PandaRoot Kalman filter code wrapper;
fRun->AddTask(new EicRecoKalmanTask(idealTracker));

// This call here just performs track backward propagation to the beam line;
fRun->AddTask(new PndPidCorrelator());

// Initialize and run the reconstruction; exit at the end;
fRun->Run();
} // reconstruction()
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Equivalent art FHiCL configuration file

#include "fcl/minimalMessageService.fcl”
process name : recenstruction

services : {
message : @local::default_message

source : {
module type : FriendlyRootInput
fileNames : [ "simulation.root" ]
friendFileNames: [ "digitization.root" ]

}
outputs : {
rootout : {
module_type : RootQutput
fileName : "recenstructien.root”
¥
}
physics : {
producers : {
idealTracker : {
module type : IdealTrackingCode // Ideal hit-to-track association
input : FWDGT // Consider only FWDGT clusters
momentumSmearing : @.1 // 10% momentum smearing
vertexSmearing: [ @.1, 8.1, 8.1 1 // Vertex position smearing
recoKalman : {
module_type : RecoKalman // Kalman track fitter
input : idealTracker // using idealTracker clusters
pidcorrelator : {
module type : PidCorrelator
reco chain : [ idealTracker, recoKalman, pidCorrelator 1
output to file : [ rootOut ]
trigger paths : [ reco_chain ]
end_paths : [ output_to_file ]
}
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Choosing A Computing Model

3 minute run — 18M SIDIS events, 50 GB raw data
Assume 20 ms/event — to keep up with data taking, need 2000 cores

@ Single-threaded: no framework support for parallelism

» 2000 runs in parallel — 100 TB disk space for input
» =~ 100 hours turn-around time per run
> Problems: cost & turnaround time

@ Multi-process: parallelism through the job scheduler
» E.g. 32 single-threaded jobs working on different event ranges of one run
> 62.5 runs in parallel — 3 TB disk space for input, 3 hours/run
> Potential problems: 1/O bottlenecks (disk head thrashing), limited scalability,
complexity outsourced to job scheduler
@ Multi-threaded: event-level parallelism through modern CPU architecture
> Similar to multi-process, but reduced random disk access & memory footprint
> Problems: scalability limited by cores/node, code complexity
@ Distributed: event-level parallelism through built-in scheduler
> 1 run in real time, 0.05 TB disk space for input.
> Virtually unlimited scalability
> Potential problems: even more code complexity, network bottlenecks
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Possible Multi-Threaded Architecture

I Thread Pool
Analysis Thread 1

Analysis Thread 2

Input T Output

Thread Queue Thread
Analysis Thread 3 _—

Analysis Thread N

Output
File

@ Thread Pool with three thread-safe queues

@ Queues hold working sets: event object, analysis chain & modules

@ Option to sync event stream at certain events (e.g. scaler events, run boundaries)
@ Option to preserve strict event ordering (at a performance penalty)

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 9 /10



Conclusions

@ A good number of suitable frameworks on the market

@ Objective choice is difficult, at least on short timescale without local
expertise

@ Joint effort with EIC development would be beneficial if sufficient
overlap and interest

@ SoLID would be best served if we made a decision relatively soon and
started porting and developing algorithms
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