SoLID Software Framework

Ole Hansen

Jefferson Lab

SoLID Collaboration Meeting
January 13, 2016

Ole Hansen (Jefferson Lab) SoLID Software Framework

General Considerations

@ Maximize consistency: Framework should support all of simulation,
digitization, reconstruction and physics analysis
@ Must support multi-pass processing: output — input for next pass
@ Support multiple analysis chains per job, e.g.
> Investigate different tracking or PID schemes
» Run several physics analyses in parallel
@ Interactive analysis must be possible with ROOT
@ DSTs should contain extensive metadata, e.g.

» Database parameters from previous stages (geometry etc.)
» Data provenance

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 2 /10

User-Written Components

@ Data producers (algorithms)
> ldeally, single algorithm per module

Output
DEICRE

Data Producer

r—
Output
Data 2

» Run-time configurable

>

Must be reusable without recompilation — multiple instances allowed,
differing in configuration

@ Data objects (results)

>

>
>
>

transient or persistent

separate from producers

may reference other data objects
should hold metadata about their origin

Ole Hansen (Jefferson Lab) SoLID Software Framework

Analysis Chains

GEM Hit
Cluster
Finder

Tracker
Hits

Tracker
Clusters

Track
Cand-
idates

Track
Finder

Calo
Cluster
Finder

Tracks
Calo upr
Clusters

Modules communicate exclusively via data objects

Module relationships configurable at run time by selecting from available
compatible input data objects (by name, class, instance or similar)

@ Support condition testing modules. Select subset of results and/or skip
further processing if certain tests fail or succeed.

@ Support multiple chains per job

@ Output modules write user-configured subset of available data objects

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 4/10

Software Framework Comparison (preliminary)
Creawe oA | raimoot(cs) | aNAGiaY | Funaal e

Origin CMS AliRoot (ALICE) In-house In-house
First release 2009 2004 2005 1998
Experiments using framework ~9 ~10 1 1
Language C++11/14 ROOT C++ (pre STL) C++98 ROOT C++ (pre STL)
Base framework self-contained ROOT self-contained ROOT
Output, object persistency ROOT ROOT HDDM ROOT
ROOT 6 support beta no n/a no
Steering, configuration FHiCL ROOT macro command line ROOT macro
Reusable/multi-instance modules yes user no user
Multiple analysis chains yes yes limited yes
Automatic metadata, data partly user user user
provenance
Test/filter modules yes user user user
Multithreading no (planned) no (unlikely) yes (partial) no (possible)
Installation dependencies cet-is (3.5 GB) FairSoft (2.8 GB) Xerces XML ROOT (500 MB)
Preferred installation Binary via UPD Source (GitHub) Source (GitHub) Source (GitHub)
Unit tests 425 39 (high-level) 0 0
User documentation User Guide Examples, Wiki Examples, Wiki, Examples
(500+ pages) User Guide (old)
User code reusable for SoLID little (DB, 1/0) much (Panda, EIC) much (GlueX) some (PHENIX)

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 5/ 10

Example FairRoot/EICRoot Script

From Alexander Kiselev's Sept 2015 EICRoot examples:

Ole Hanse

void reconstruction()

// Load basic libraries;
gROOT->Macro("SYMCWORKDIR/gconfig/reotlogon.C");

// Create generic analysis run manager; configure it for track reconstruction;
EicRunAna *fRun = new EicRunAna{);

fRun->SetInputFile ("simulation.root");

fRun->AddFriend ("digitization.root");
fRun->SetQutputFile("reconstruction.root");

/4 Call "ideal" hit-to-track asseociator routine;

EicIdealTrackingCode* idealTracker = new EicIdealTrackingCode();
idealTracker->AddDetectorGroup("FWDGT");

// Add a bit of fairness to the reconstruction procedure; smear "ideal"
// momenta by 10% relative before giving hit collection over to KF fitter;
idealTracker->SetRelativeMomentumSmearing(0.1);

// Also smear a bit "ideal" vertex;

idealTracker->SetVertexSmearing(8.61, 0.01, 0.01);
fRun->AddTask(idealTracker);

// Invoke and configure PandaRoot Kalman filter code wrapper;
fRun->AddTask(new EicRecoKalmanTask(idealTracker));

// This call here just performs track backward propagation to the beam line;
fRun->AddTask(new PndPidCorrelator());

// Initialize and run the reconstruction; exit at the end;
fRun->Run();
} // reconstruction()

Jefferson Lab) SoLID Software Framework

Equivalent art FHiCL configuration file

#include "fcl/minimalMessageService.fcl”
process name : recenstruction

services : {
message : @local::default_message

source : {
module type : FriendlyRootInput
fileNames : ["simulation.root"]
friendFileNames: ["digitization.root"]

}
outputs : {
rootout : {
module_type : RootQutput
fileName : "recenstructien.root”
¥
}
physics : {
producers : {
idealTracker : {
module type : IdealTrackingCode // Ideal hit-to-track association
input : FWDGT // Consider only FWDGT clusters
momentumSmearing : @.1 // 10% momentum smearing
vertexSmearing: [@.1, 8.1, 8.1 1 // Vertex position smearing
recoKalman : {
module_type : RecoKalman // Kalman track fitter
input : idealTracker // using idealTracker clusters
pidcorrelator : {
module type : PidCorrelator
reco chain : [idealTracker, recoKalman, pidCorrelator 1
output to file : [rootOut]
trigger paths : [reco_chain]
end_paths : [output_to_file]
}

Ole Hansen (Jefferson Lab) LID Software Framework

Choosing A Computing Model

3 minute run — 18M SIDIS events, 50 GB raw data
Assume 20 ms/event — to keep up with data taking, need 2000 cores

@ Single-threaded: no framework support for parallelism

» 2000 runs in parallel — 100 TB disk space for input
» =~ 100 hours turn-around time per run
> Problems: cost & turnaround time

@ Multi-process: parallelism through the job scheduler
» E.g. 32 single-threaded jobs working on different event ranges of one run
> 62.5 runs in parallel — 3 TB disk space for input, 3 hours/run
> Potential problems: 1/O bottlenecks (disk head thrashing), limited scalability,
complexity outsourced to job scheduler
@ Multi-threaded: event-level parallelism through modern CPU architecture
> Similar to multi-process, but reduced random disk access & memory footprint
> Problems: scalability limited by cores/node, code complexity
@ Distributed: event-level parallelism through built-in scheduler
> 1 run in real time, 0.05 TB disk space for input.
> Virtually unlimited scalability
> Potential problems: even more code complexity, network bottlenecks

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 8 /10

Possible Multi-Threaded Architecture

I Thread Pool
Analysis Thread 1

Analysis Thread 2

Input T Output

Thread Queue Thread
Analysis Thread 3 _—

Analysis Thread N

Output
File

@ Thread Pool with three thread-safe queues

@ Queues hold working sets: event object, analysis chain & modules

@ Option to sync event stream at certain events (e.g. scaler events, run boundaries)
@ Option to preserve strict event ordering (at a performance penalty)

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 9 /10

Conclusions

@ A good number of suitable frameworks on the market

@ Objective choice is difficult, at least on short timescale without local
expertise

@ Joint effort with EIC development would be beneficial if sufficient
overlap and interest

@ SoLID would be best served if we made a decision relatively soon and
started porting and developing algorithms

Ole Hansen (Jefferson Lab) SoLID Software Framework Jan 13, 2016 10 / 10

