
SoLID Software Framework

Ole Hansen

Jefferson Lab

SoLID Collaboration Meeting
May 5, 2016

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 1 / 15



Framework Pros & Cons
Framework Pros Cons 

art (FNAL) • Large user base 
• Developed by experts 
• Very good documentation 
• Modern 
• ROOT6 support 
• Best match to our requirements 

• Not multi-threaded, not distributed (but 
multi-threading planned) 
• Heavy binary installation by default 
• In-house build system 
• Somewhat complex 

FairROOT (GSI) • Familiar ROOT environment 
• Large user base (incl. EIC a.t.m.) 
• Distributed processing extension 
(experimental) 
• Good built-in simulation support 

• Absent documentation 
• Poor API definition 
• Old code base 
• Existing code tends to be a mess 
• Single-threaded (unlikely to change) 
• Heavy dependency requirements 

Fun4All (PHENIX) • Lightweight 
• Well-tested, proven performance 
• Familiar ROOT environment 

• One-man project 
• Very PHENIX-centric 
• Absent documentation 
• Very old code base 
• Many missing standard features 
• Single-threaded (unlikely to change) 

JANA (JLab Hall D) • Multi-threaded 
• Lightweight 
• Local expertise 

• Small user base 
• Too many technical limitations 
• In-house DST format (HDDM) 

Clara (JLab Hall B) • Multi-threaded and distributed 
• Local expertise 

• Small user base 
• Java based 
• Very complex 
• Performance concerns 
• In-house DST format (EVIO) 

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 2 / 15



art Test Installation @JLab
ifarm1101[1] ls /work/halla/solid/FNAL/products/
art/ g4abla/ g4tendl/ python/ toyExperiment/
boost/ g4emlow/ gcc/ qt/ upd/
cetbuildtools/ g4neutron/ gccxml/ root/ ups/
cetlib/ g4neutronxs/ gdb/ setup valgrind/
cetpkgsupport/ g4nucleonxs/ geant4/ setups xerces_c/
clhep/ g4nuclide/ git/ setups_layout xrootd/
cmake/ g4photon/ gitflow/ setup-solid.csh
cppunit/ g4pii/ libxml2/ setup-solid.sh
fftw/ g4radiative/ messagefacility/ sqlite/
fhiclcpp/ g4surface/ ninja/ tbb/

ifarm1101[2] source /work/halla/solid/FNAL/products/setup-solid.csh
ifarm1101[3] which ups
/work/halla/solid/FNAL/products/ups/v5_2_0/Linux64bit+2.6-2.12/bin/ups

ifarm1101[5] ups list -aK+ art
"art" "v1_18_05" "Linux64bit+2.6-2.12" "debug:e9" ""
"art" "v1_18_05" "Linux64bit+2.6-2.12" "e9:prof" ""

ifarm1101[5] du -sh /work/halla/solid/FNAL/products/
58G /work/halla/solid/FNAL/products/

The above is a (mostly) self-contained software environment
This installation includes debug builds, source code and Geant4
The contents are portable — just copy the directory to your workstation
(must be RHEL 6, CentOS 6, or compatible. RHEL 7 to follow.)
When porting, update setup-solid.{sh,csh} scripts as appropriate

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 3 / 15



art Test Installation @JLab
ifarm1101[1] ls /work/halla/solid/FNAL/products/
art/ g4abla/ g4tendl/ python/ toyExperiment/
boost/ g4emlow/ gcc/ qt/ upd/
cetbuildtools/ g4neutron/ gccxml/ root/ ups/
cetlib/ g4neutronxs/ gdb/ setup valgrind/
cetpkgsupport/ g4nucleonxs/ geant4/ setups xerces_c/
clhep/ g4nuclide/ git/ setups_layout xrootd/
cmake/ g4photon/ gitflow/ setup-solid.csh
cppunit/ g4pii/ libxml2/ setup-solid.sh
fftw/ g4radiative/ messagefacility/ sqlite/
fhiclcpp/ g4surface/ ninja/ tbb/

ifarm1101[2] source /work/halla/solid/FNAL/products/setup-solid.csh
ifarm1101[3] which ups
/work/halla/solid/FNAL/products/ups/v5_2_0/Linux64bit+2.6-2.12/bin/ups

ifarm1101[5] ups list -aK+ art
"art" "v1_18_05" "Linux64bit+2.6-2.12" "debug:e9" ""
"art" "v1_18_05" "Linux64bit+2.6-2.12" "e9:prof" ""

ifarm1101[5] du -sh /work/halla/solid/FNAL/products/
58G /work/halla/solid/FNAL/products/

The above is a (mostly) self-contained software environment
This installation includes debug builds, source code and Geant4
The contents are portable — just copy the directory to your workstation
(must be RHEL 6, CentOS 6, or compatible. RHEL 7 to follow.)
When porting, update setup-solid.{sh,csh} scripts as appropriate

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 3 / 15



Getting Started: The art Workbook (I)

Download workbook PDF
https://web.fnal.gov/project/ArtDoc/Shared%20Documents/art-documentation.pdf

Install the workbook code (with JLab patches)

ifarm1401[70] source /work/halla/solid/FNAL/products/setup-solid.csh
ifarm1401[74] mkdir workbook; cd workbook
ifarm1401[76] tar xf /work/halla/solid/FNAL/art-workbook.tar.bz2
ifarm1401[78] mkdir build-prof; cd build-prof
ifarm1401[86] source ../art-workbook/ups/setup_for_development $ART_WORKBOOK_QUAL -p
.... (snip) ....
ifarm1401[87] buildtool -j4
.... (go have a coffee) ....

––––––––––––––––––
INFO: Stage build successful.
––––––––––––––––––
ifarm1401[88]

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 4 / 15

https://web.fnal.gov/project/ArtDoc/Shared%20Documents/art-documentation.pdf


Getting Started: The art Workbook (II)

Start using the examples

ifarm1401[89] art -c fcl/FirstModule/first.fcl |& tee output/first.log
%MSG-i MF_INIT_OK: art 05-May-2016 15:03:56 EDT JobSetup
Messagelogger initialization complete.
%MSG
05-May-2016 15:04:10 EDT Initiating request to open file inputFiles/input01.art
05-May-2016 15:04:13 EDT Successfully opened file inputFiles/input01.art
Hello from First::constructor.
Begin processing the 1st record. run: 1 subRun: 0 event: 1 at 05-May-2016 15:04:38 EDT
Hello from First::analyze. Event id: run: 1 subRun: 0 event: 1
Hello from First::analyze. Event id: run: 1 subRun: 0 event: 2
.... (snip) ....
Hello from First::analyze. Event id: run: 1 subRun: 0 event: 10
05-May-2016 15:04:38 EDT Closed file inputFiles/input01.art

TrigReport ––––– Event Summary ––––––
TrigReport Events total = 10 passed = 10 failed = 0

TrigReport ––– Modules in End-Path: end_path ––––––
TrigReport Trig Bit# Visited Passed Failed Error Name
TrigReport 0 0 10 10 0 0 hi

TimeReport ––––– Time Summary –-[sec]––
TimeReport CPU = 0.000456 Real = 0.000000

Art has completed and will exit with status 0.

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 5 / 15



Getting Started: The art Workbook (III)

art-workbook is based on toyExperiment

Event display demo – uses ROOT’s Eve viewer1

[ole@haplix1a build-prof]$ art -c fcl/EventDisplay3D/eventDisplay01.fcl

1Requires OpenGL. Does not work over ssh
Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 6 / 15



Resources, Documentation

The art website (brand new!):
http://art.fnal.gov

Wiki (lots of developer information)
https://cdcvs.fnal.gov/redmine/projects/art/wiki

August 2015 software workshop (many informative talks)
https://indico.fnal.gov/conferenceDisplay.py?confId=9928

Mu2e documentation
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 7 / 15

http://art.fnal.gov
https://cdcvs.fnal.gov/redmine/projects/art/wiki
https://indico.fnal.gov/conferenceDisplay.py?confId=9928
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml


Draft Task List for art@SoLID

1 Implement geometry service
2 Implement producer module(s) that call Geant4, similar to artG4
3 Define a draft of a data model for SoLID (digits, hits, clusters, . . . ).

Implement corresponding classes.
4 Write a conditions database service, if possible with CCDB backend
5 Start porting/implementing algorithms, starting with simple ones

I GEM & calorimeter digitization
I GEM cluster finder
I Basic calorimeter cluster finder
I Similar for Cherenkovs

6 Decide on preferred software packaging, platform support, build system, etc.
7 Research tracking algorithms (NB: our tracking problem has already been

solved somewhere!)

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 8 / 15



Conclusions

Considering many factors, overall art appears to be the most suitable
software framework for SoLID that is readily available at the moment

Test installation available at JLab

Need to start using the framework for small prototypes to identify
potential issues

First priority should be to port the existing simulation chain into art.
Unfortunately, this is also one of the more tricky parts.

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 9 / 15



Backup Slides

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 9 / 15



What’s In An Event-Processing Framework?

Standardizes access: API (Application Programming Interface)
I Event store
I Databases (e.g. geometry, conditions, configuration)
I Services (e.g. histogramming, messages)
I Users should have to learn API only once

API enforces certain restrictions (i.e. implements paradigms)

Implements event loop (scheduler)

Provides persistency I/O (data serialization)

Frameworks tend to be purely technical. No Physics Here

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 10 / 15



Things We Want: Decoupled Algorithms & Data Objects

Data Producer 

Input  
Data 3 

Input 
Data 1 

Input  
Data 2 

Output  
Data 1 

Output  
Data 2 

Config 

Data objects (inputs & results)
I Mostly “dumb data” (structs)
I May reference other data objects
I Hold metadata

Data consumers/producers (algorithms)
I Run-time configurable
I Single algorithm per module

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 11 / 15



Things We Want: Analysis Chains

Track 
Cand- 
idates 

Track 
Tests 

Track 
Finder 

Tracker  
Clusters 

Calo 
Clusters 

GEM Hit 
Cluster 
Finder 

Tracker 
Hits 

Calo 
Cluster 
Finder 

Calo 
Hits 

Track 
Fitter 

Conf=A 

Fitted 
Tracks 

“A” 

Track 
Fitter 

Conf=B 

Fitted 
Tracks 

“B” 

Track 
Cand- 
idates 

Modules communicate exclusively via data objects
Module relationships configurable at run time
Multiple chains per job
Support for condition testing modules
Output modules for DST and histogram/ntuple files

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 12 / 15



Apparent State Of the Art Architecture

Converter

Algorithm

Event Data
Service

Persistency
Service

AlgorithmAlgorithm

Transient
Event Store

Detec. Data
Service

Persistency
Service

Transient
Detector
Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service

Data
Files

Transient
Histogram
Store

Application
Manager

Converter
ConverterEvent

Selector

Data
Files

Data
Files

Figure 2: Object Diagram of the GAUDI Architecture

4.2 Transient data stores

The data objects needed by the algorithms are organized in several transient data stores, depending
on the nature of the data itself and its lifetime. The Transient Event Store contains event data that
are valid only for the time it takes to process one event. The Transient Detector Store contains
data that describe various aspects of the behavior of the detector (e.g. alignment) and generally
have a lifetime that corresponds to the processing of many events. The Transient Histogram Store
contains statistical data, which typically have a lifetime corresponding to the data processed in
a complete job. Although the stores behave slightly differently, particularly with respect to the
data lifetime (e.g. the event data store is cleared for each event), their implementations have many
things in common and are based on a common component.

A transient store helps to minimize coupling between algorithm objects and data objects.
This approach was inspired by the work done in the BaBar experiment [3]. An algorithm can
deposit some piece of data into the transient store, and these data can be picked up later by other
algorithms for further processing without knowing how they were created. This conforms to the
”blackboard” architectural style, in which the transient store fulfils the role of the blackboard.

The transient data store also serves as an intermediate buffer for any type of data conver-
sion to another representation of the data, in particular the conversion into persistent objects or
graphical objects. Thus data can have one transient representation and zero or more persistent or
graphical representations.

The organisation of the data within the transient data stores is ”tree-like”, similar to a Unix
file system. This allows data items that are logically related, such as Monte Carlo ”truth” infor-
mation, to be structured and grouped at run-time. Each node in the tree may either contain data
members, or other nodes containing further groups of data members (Figure 4). As in a directory
structure, each node is theownerof everything below it and will delete all these items when it gets
deleted. In general, object-oriented data models do not map onto a tree structure. Thus, mesh-like
object associations have been implemented using symbolic links (again inspired from the Unix file
system) in which the node does not acquire ownership of the referenced item.

From G. Barrand et al., “GAUDI - A software architecture and framework for building LHCb data processing applications”,
CHEP2000

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 13 / 15



Recap: Lighter-Weight Frameworks Comparison
Feature art (FNAL) FairRoot (GSI) Fun4All (PHENIX) JANA (JLab) 

Origin CMSSW (CMS) AliRoot (ALICE) In-house In-house 

First release 2009  2005 2003 2005 

Collaborations using framework ~9 ~10 1 1 

Language C++11/14 ROOT C++ (pre STL) ROOT C++ (pre STL) C++98 

Base framework self-contained ROOT ROOT self-contained 

Output, object persistency  custom ROOT plain ROOT custom ROOT HDDM (XML) 

Steering, configuration FHiCL ROOT macro ROOT macro command line 
& compiled in 

Reusable/multi-instance modules yes (user) (user?) very limited 

Multiple analysis chains yes yes yes very limited 

Data product identification type + 3 keys type + producer name type + tag 

Complexity of data object search O(logN) O(1) O(N) O(M>N) 

Data provenance tracking yes no no no 

Test/filter modules to skip event yes output module output module output module 

Thread-safe code yes no no yes (partial) 

Main dependencies cet-is (3.5 GB) FairSoft (2.8 GB) ROOT, boost (1 GB) Xerces XML 

Preferred installation Binary via UPD Source (GitHub) Source (GitHub) Source (GitHub) 

Unit tests 425 39 (high-level) 0 0 

User documentation User Guide (500p), 
workshops 

 Examples, Wiki Examples, Wiki Examples, Wiki, 
User Guide (old) 

User code reusable for SoLID some (DB, I/O) much (Panda, EIC) some (PHENIX) much (GlueX) 

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 14 / 15



Recap: Lighter-Weight Frameworks Services Features

Feature art (FNAL) FairRoot (GSI) Fun4All (PHENIX) JANA (JLab) 

Transient event store Event, run, subrun 
objects 

ROOT folders Phool Node Tree With producers 

Persistency Service custom ROOT I/O plain ROOT I/O custom ROOT I/O (not part of JANA) 

Folders in event store no yes yes no 

Event Data Service template function TClonesArray template function template function 

Message service yes yes no yes 

JobOptions Service FHiCL API FairRuntimeDb no ParameterManager 

Geant4 integration artG4 VMC yes (?) no 

Detector Data Service (geo) no (service API) no (geo classes) no JGeometryXML 

Detector Data Service (cond) no (service API) no no JCalibrationCCDB 

Histogram Service TFileService no HistoManager no 

 Interactive mode no yes yes no 

Configuration test yes no no no 

Memory tracker yes ROOT memcheck no no 

Polymorphic data objects yes yes no (?) yes 

Inter-object references  art::Ptr, art::Assns 
(1-1, 1-N, N-N) 

TRef, FairLink (?) 
 

integer indices (?) 
 

integer indices 

Ole Hansen (Jefferson Lab) SoLID Software Framework May 6, 2016 15 / 15


	Appendix

