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Outline

* Digitization for SoLID-SIDIS and J/y configuration
* Progressive tracking for SIDIS configuration with Helium-3 target

* Conclusionand plan



Digitization
* GEM digitization based on SBS work (E. Cisbani, R. Holmes) and Ole’s work for
SolLID.

* Input: GEMC hit position and energy deposition in the gas layer above the first
GEM foil.

* Process:
* Poisson-distributed number of ion pairs based on energy deposition
* Uniform distribution for ionization probability along the path
* Assume constant-velocity diffusion and drift
* Gaussian distribution of charge deposition on strips
* GEM response tuned to match COMPASS observation
* Sample up to 10 time samples after trigger
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Digitization for SIDIS (J/ )

* Geometry:

* 6 GEM trackers in total (4 for LA, 5 for FA). Each contains 30 non-overlapping GEM chambers.
No dead-area

* Need to update this once the design of GEM trackers is finalized
* 40cm Helium-3 target (15cm LH2 target)

* Signal run (from Zhiwen):
e Generator: uniform
* Only interactions of primary particles recorded
 Signal particles: electron

» Background run (From Zhiwen):
» 1e8 electrons shooting at the target

* Randomly select background event to mix with the signal (total number depends on the
beam current and size of simulation time window)

* For each event, also randomizethe timing



GEM Occupancy for SIDIS (J/ )

100% background.
275 ns time window in the simulation (200ns before trigger start time and 75 ns after)
Raw Occupancy: # of u/v strips above threshold / # of total u/v strips
Noise cut (NC): amplitude ratio between 3 time-samples, require raising edge
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Signal Hit Resolution

R resolution and phi resolution on
the second GEM plane (the one has
highest background rate)

Resolution at 100% background level
deteriorate due to clusters hitting
the same strips (overlapping)

Resolution way too good (should get
60um resolution along the readout
strip direction)
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Signal Charge Sharing and Asymmetry
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Tracking

* Developed a semi-new tracking program based on Ole’s TreeSearch program

* Decoder, clusterization, and deconvolution identical as TreeSearch

* Softwarestructure modified a bit in order to take into account also SIDIS and J/ Y

configuration

* Hit amplitude matching can be done before (or after) tracking

* Checked the decoded result against the TreeSearch program with the Old PVDIS digitization

input. No difference.

* Use Xin Qian’s progressive tracking algorithm as pattern recognition:

Loop over all hits on all GEM
detectors, select candidate
tracks based on the track
model

Examine the candidate tracks:
how well they can be described by
helixes
Charge asymmetry for each hit
Coarse vertex z reconstruction

Select the best track(s) pass
the second step exam as the
final output




SIDIS Large Angle Event

* Signal particle:
* 15k Electrons that hit LAEC with E deposition > 0.9 GeV

 Condition:
* 100% background
e LAEC hit info (1 cm resolution) used in pattern recognition.
* 3-sampledeconvolutionalgorithm applied
« Signal hit recon efficiency (after noise cut): ~97%

Efficiency 2.0% 97.2% 0.8%
| o | 1 | 2 | 3 | 4
# of ghost hit per track 95.2% 3.7% 0.4% 0.7% 0.1%



SIDIS Forward Angle Event

* Signal particle:
» 8k Electrons that hit FAEC with E deposition > 0.9 GeV

e Condition:

* 100% background

* FAEC hitinfo (1 cm resolution) not used in pattern recognition.
* 3-sampledeconvolution algorithm applied

* Signal hit recon efficiency (after noise cut): ~97%

Efficiency 1.7% 77.0% 21.3%
| o | 1 | 2 | 3 | 4 | 5 |
# of ghost hit per track 70.7% 7.2% 0.8% 0.1% 12.7% 8.4%

Result pretty bad. Possible explanation is high energy tracks exists in background file, cannot distinguish them with
GEM info only, need help from downstream detectors.



SIDIS Forward Angle Event

* Signal particle:
» 8k Electrons that hit FAEC with E deposition > 0.9 GeV

e Condition:

* 100% background

* FAEC hitinfo (1 cm resolution) used in pattern recognition.
* 3-sampledeconvolution algorithm applied

* Signal hit recon efficiency (after noise cut): ~97%

Efficiency 2.0% 95.0% 3.0%
| o | 1 | 2 | 3 | 4 | 5 |
# of ghost hit per track 86.8% 8.9% 1.0% 0.2% 2.2% 0.9%

Simulation indicates that A@ between hits on last GEM and FAEC is no larger than 70 degs. Look for hits only in a region

+/- 70 degs around the hit on FAEC. This is a very crude judgment.
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SIDIS Large Angle Event

* Signal particle:
* 15k Electrons that hit LAEC with E deposition > 0.9 GeV

 Condition:
* 100% background
e LAEC hit info (1 cm resolution) used in pattern recognition.
e 3-sampledeconvolutionalgorithm not applied
« Signal hit recon efficiency (after noise cut): ~95%

Efficiency 5.8% 83.2% 11.0%
# of ghost hit per track 74.8% 9.5% 4.5% 1.1% 0.7%
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SIDIS Forward Angle Event

* Signal particle:
» 8k Electrons that hit FAEC with E deposition > 0.9 GeV

e Condition:

100% background

FAEC hit info (1 cm resolution) used in pattern recognition.
3-sampledeconvolution algorithm not applied

Signal hit recon efficiency (after noise cut): ~95%

Efficiency 2.1% 38.4% 59.5%
# of ghost hit per track 28.7% 8.6% 2.8% 2.6% 55.4% 1.9%
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Conclusion

* Info on downstream detectors is necessary for pattern recognition (FAEC, SPD,
Cherenkov and MRPC)

* Progressive trackingis good enough for current SIDIS background level and
current digitization

* Progressive trackingis not sufficient if we have only one APV25 time sample, if
without major modifications to the algorithm

* Plan to develop a Kalman Filter pattern recognition algorithm

* Has numerous applications, argubaly the most popular tracking algorithm nowaday

* Very good ability at selecting signal hits, this ability gets better as more hits added to the
track

* Drawback:slow due to field propagation, high dimentional matrices manipulation.
Initialization is tricky, ability to distringuish signal hit weak at the beginning.
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MC.pt.hitres {MC.pt.plane==0&&MC.pt.clustsz<48&&(MC.pt.status&0x1f)==0x0f}
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