Update on SIDIS Issue: Systematic uncertainties and physics impacts

> SoLID Collaboration Meeting May 6-7, 2016

> > Tianbo Liu

Duke University and Duke Kunshan University

Raw Asymmetry

n (³He)

Absolute uncertainties on raw asymmetries.

Spin flip every 20 minutes. 1% control on luminosity, detector efficiency.

Absolute	π^+	π^-
11 GeV (48 days)	1.3E-3	1.0E-3
8.8 GeV (21 days)	2.1E-3	1.5E-3

p (NH₃)

Spin flip every 2 hours. 2% control on luminosity, detector efficiency.

Absolute	π^+	π^{-}
11 GeV (55 days)	6.1E-3	7.1E-3
8.8 GeV (27.5 days)	8.5E-3	9.9E-3

Resolution

based on Weizhi's tracking results

Absolute uncertainties with three term separation.

n (³He)

Absoluto	π	ç+	π^-	
Absolute	Sivers	Collins/Pretzel.	Sivers	Collins/Pretzel.
11 GeV	4.0E-4	5.3E-4	1.4E-4	1.8E-4
8.8 GeV	4.3E-4	5.8E-4	1.5E-4	1.9E-4

 φ_S

Absoluto	π	π^+		π^-	
Absolute Sivers Coll		Collins/Pretzel.	Sivers	Collins/Pretzel.	
11 GeV	1.8E-4	2.6E-4	0.73E-4	0.80E-4	
8.8 GeV	1.6E-4	2.3E-4	0.66E-4	0.80E-4	

p (NH₃)

On-going tracking study by Weizhi.

Background

Random coincidence

Within 6 ns time window. Assume 20% uncertainty on this subtraction. n (³He)

Relative	π^+	π^-
11 GeV	0.21 %	0.21 %
8.8 GeV	0.24 %	0.24 %

p (NH₃)

Relative	π^+	π^-
11 GeV	0.22 %	0.22 %
8.8 GeV	0.23 %	0.23 %

Other background

On-going simulation by Zhiwen/Tianbo.

Nuclear Effect: ³He

Sivers

Relative	π^+	π^{-}
11 GeV	4.3 %	4.2 %
8.8 GeV	4.3 %	4.2 %

Collins

Relative	π^+	π^-
11 GeV	4.7 %	4.6 %
8.8 GeV	4.7 %	4.6 %

Pretzelosity

Relative	π^+	π^{-}
11 GeV	4.4 %	4.4 %
8.8 GeV	4.4 %	4.4 %

Dilution Factor: NH₃

Yield from LHe: empty and dummy target. 1.5 days (11/8.8 GeV)Yield from N: carbon disk. 6 days (optics and detector calibration) assume 1% uncertainty of the correction from C to N.

Relative	π^+	π^-
11 GeV	3.8 %	4.7 %
8.8 GeV	3.8 %	4.7 %

Systematic Uncertainty: n (³He)

	11 GeV		8.8 GeV	
	π^+	π^-	π^+	π^-
Raw asym. (abs.)	1.3E-3	1.0E-3	2.1E-3	1.5E-3
Resolution (abs.)*	4.4/5.9 E-4	1.6/2.0 E-4	4.6/6.2 E-4	1.6/2.0 E-4
Background (rel.)?	0.21%	0.21%	0.24%	0.24%
Target pol. (rel.)	3%	3%	3%	3%
Nuclear effect (rel.)	~ 4.5%	~ 4.5%	~ 4.5%	~ 4.5%
Diffractive meson (rel.)	3%	2%	3%	2%
Radiative (rel.)	2%	2%	2%	2%
Total (abs.+ rel.)	~1.4E-3 + 6.5%	~ 1.0E-3 + 6.1%	~2.2E-3 + 6.5%	~ 1.5E-3 + 6.1%

Systematic Uncertainty: p (NH₃)

	11 GeV		8.8 GeV	
	π^+	π^-	π^+	π^-
Raw asym. (abs.)	6.1E-3	7.1E-3	8.5E-3	9.9E-3
Resolution (abs.)	?	?	?	?
Background (rel.)?	0.22%	0.22%	0.23%	0.23%
Target pol. (rel.)	3%	3%	3%	3%
Dilution (rel.)	~ 3.8%	~ 4.7%	~ 3.8%	~ 4.7%
Diffractive meson (rel.)	3%	2%	3%	2%
Radiative (rel.)	2%	2%	2%	2%
Total (abs.+ rel.)	~ 6.1E-3 + 6.0%	~ 7.1E-3 + 6.3%	~ 8.5E-3 + 6.0%	~ 9.9E-3 + 6.3%

Physics Impact

SIDIS differential cross section

18 structure functions $F(x, z, Q^2, P_T)$, model independent. (one photon exchange approximation)

 $\begin{aligned} \frac{d\sigma}{dxdydzdP_T^2d\phi_hd\phi_S} \\ &= \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \\ &\times \left\{F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)} F_{UU}^{\cos\phi_h} \cos\phi_h + \epsilon F_{UU}^{\cos2\phi_h} \cos2\phi_h + \lambda_e \sqrt{2\epsilon(1-\epsilon)} F_{LU}^{\sin\phi_h} \sin\phi_h \\ &+ S_L \left[\sqrt{2\epsilon(1+\epsilon)} F_{UL}^{\sin\phi_h} \sin\phi_h + \epsilon F_{UL}^{\sin2\phi_h} \sin2\phi_h\right] + \lambda_e S_L \left[\sqrt{1-\epsilon^2} F_{LL} + \sqrt{2\epsilon(1-\epsilon)} F_{LL}^{\cos\phi_h} \cos\phi_h\right] \\ &+ \left\{S_T \left[(F_{UT,T}^{\sin(\phi_h-\phi_S)} + \epsilon F_{UT,T}^{\sin(\phi_h-\phi_S)}) \sin(\phi_h - \phi_S) + \epsilon F_{UT}^{\sin(\phi_h+\phi_S)} \sin(\phi_h + \phi_S) + \epsilon F_{UT}^{\sin(3\phi_h-\phi_S)} \sin(3\phi_h - \phi_S)\right) \\ &+ \sqrt{2\epsilon(1+\epsilon)} F_{UT}^{\sin\phi_S} \sin\phi_S + \sqrt{2\epsilon(1+\epsilon)} F_{UT}^{\sin(2\phi_h-\phi_S)} \cos(2\phi_h - \phi_S)\right] \\ &+ \lambda_e S_T \left[\sqrt{1-\epsilon^2} F_{LT}^{\cos\phi_S} \cos\phi_S + \sqrt{2\epsilon(1-\epsilon)} F_{LT}^{\cos(2\phi_h-\phi_S)} \cos(2\phi_h - \phi_S)\right] \right\} \end{aligned}$

SoLID Impact on Sivers

$$f_{1T}^{\perp(1)}(x) = \int d^2 \mathbf{k}_{\perp} \frac{\mathbf{k}_{\perp}^2}{2M^2} f_{1T}^{\perp}(x, k_{\perp})$$

parametrization by M. Anselmino *et al.*, EPJ A 39, 89 (2009). SoLID projection with transversely polarized neutron and proton data.

Quark Transverse Momentum in *p*↑

SoLID Impact on Transversity

95% C.L.

parametrization by M. Anselmino et al., PR D 87, 094019 (2013).

SoLID projection with transversely polarized neutron and proton data.

SoLID Impact on Transversity TMD

95% C.L.

parametrization by M. Anselmino et al., PR D 87, 094019 (2013).

SoLID projection with transversely polarized neutron and proton data.

SoLID Impact on Pretzelosity

parametrization by C. Lefky et al., PR D 91, 034010 (2015).

SoLID projection with transversely polarized neutron and proton data.

Orbital Angular Momentum

$$L_{z}^{q} = -\int \mathrm{d}x \mathrm{d}^{2}\mathbf{k}_{\perp} \frac{\mathbf{k}_{\perp}^{2}}{2M^{2}} h_{1T}^{\perp q}(x,k_{\perp}) = -\int \mathrm{d}x h_{1T}^{\perp(1)q}(x)$$

Tensor Charge

SoLID projection based on Anselmino et al 2013a parametrization.

Tensor Charge and Neutron EDM

Electric Dipole Moment

Tensor charge and EDM

 $d_n = \delta_T u \, d_u + \delta_T d \, d_d + \delta_T s \, d_s$

current neutron EDM limit $|d_n| < 2.9 \times 10^{-26} \, e \cdot \mathrm{cm}$

Thanks!