Optimizing GEM parameters for SoLID simulation Nilanga Liyanage

University of Virginia

Digitization

- GEM digitization based on SBS work (E. Cisbani, R. Holmes) and Ole's work for SoLID.
- Input: GEMC hit position and energy deposition in the gas layer above the first GEM foil.
- Process:
 - · Poisson-distributed number of ion pairs based on energy deposition
 - · Uniform distribution for ionization probability along the path
 - Assume constant-velocity diffusion and drift
 - Gaussian distribution of charge deposition on strips
 - GEM response tuned to match COMPASS observation
 - Sample up to 10 time samples after trigger

Optimizing simulation parameters

Optimizing simulation parameters

Drift Cathode Variables to compare between simulation and data:

- Number of strips per cluster
- Number of strips
- Cluster ADC sum
- ADC-x vs. ADC-y
- Occupancy.

Pileup: minimum allowable time between signal and background

Two important effects due to high occupancy

- On a single strip:
 - If a background hit falls within the pileup time on a signal strip, the signal is lost: leads to strip inefficiency.
 - Given that we have 5 layers, we will be able to tolerate up to about 25% max.
- On a given module at tracking level
 - Many background hits on a given plane: leads to n² level ghost hits
 - Correlating the signal hit time to trigger allows to cut background.
 - Recent results show we can narrow this time window to ~ 30 ns.

Testing the modules

Plan and Timeline

- Geant4 simulation of X-ray and ⁹⁰Sr into a SBS GEM: complete
- Digitization of X-ray and ⁹⁰Sr runs: complete
- Analyze simulated data using the same scripts used for UVa data: in progress
- Compare simulation versus data for x-ray/⁹⁰Sr setup and optimize parameters: ~ 2-3 weeks.
- Run high rate simulations to compare with high intensity x-ray runs to study pileup/rate limitations. ~ 1 month
- Check optimized simulations against pRad, test beam and cosmic data. \sim 1-2 months
- Work with Weizhi and Zhiwen to get occupancy rates for SoLID conditions. ~ 2 months
- Optimize strip geometry and segmentation if needed.

UVa GEM Lab

Team members: NL, Dr. Kondo Gnanvo, Dr. Vladimir Nelyubin, Dr. Huong Nguyen, Xinzhan Bai, Danniung Di, Siyu Jian, Tim Tim McMullen

Micro-pattern detector R&D program

• Overview

- R&D effort focuses on intermediate tracking system:
 - Barrel tracking system based on MicroMegas detectors (Dedicated barrel / curved MM EIC R&D program) manufactured as cylindrical shell elements and
 - Rear / Forward tracking system based on triple-GEM detectors manufactured as
 - planar segments (Collaboration of FIT/ TU / UVA)
- R&D effort Main strategy:
 - Design and assembly of large cylindrical MicroMegas detector elements and large planar triple-GEM detectors
 - Test and characterization of MicroMegas and triple-GEM prototype detectors
 - Design and test of new, common chip readout system employing CLAS12 'DREAM'
 chip development, ideally suited for micro-pattern detectors
 - Utilization of light-weight materials
 - Development and commercial fabrication of various critical detector elements
 - European/US collaborative effort on EIC detector development (CEA Saclay, and Temple University)

