SoLID GEM Digitization and Tracking

Weizhi Xiong, Nilanga Liyanage, Zhiwen Zhao, Tim McMullen SoLID Collaboration Meeting December 2nd

Outline

- Part I:
 - New digitization for SoLID GEM
 - Occupancy for the SIDIS-He3 configuration
 - Tracking performance for the SIDIS-He3 configuration
- Part II:
 - Tracking Framework for PVDIS configuration, using Kalman Filter algorithm

What's new in the new digitization

- Three main new features:
 - Avalanche model:
 - Old one: Heaviside model
 - New one: Cauchy-Lorentz model
 - Cross talk signal:
 - Old one: Not implemented
 - New one: add a induced cluster 32 strip away from the main signal. The induced amplitude is about 10% of the main signal
 - Pedestal noise:
 - Old one: simple Gaussian function
 - New one: Gaussian function plus a sinusoidal function with fixed period but varying amplitude

Heaviside avalanche model was the only one in the digitization, give very concentrated signal

Cauchy-Lorentz model is newly developed by Prof. Liyanage

- Total size of a cluster using Heaviside and Lorentzian model
- This shows how many strips got "affected" by a cluster
- The actually size of a reconstructed cluster will be smaller than this, based on the threshold that we put
- But in general, larger size lead to higher pile up and occupancy

- Cluster size after apply a threshold cut at ADC = 80
- Threshold cut doesn't affect much on the Heaviside model, but has very large impact on Lorentzian
- Lorentzian has a long tail, likely correspond to larger signal (more strips will be appear above the threshold)

Cluster size after apply a threshold cut at ADC = 80

Cross Talk Signal

- Currently using a very simple and crude simulation for the cross talk
 - After finishing digitizing one cluster, take the cluster and make a smaller copy on either right or left hand side of the cluster (~10% of the main signal)
 - The induced signal is always appear 32 strips apart from the main signal
- To suppress the induced signal
 - After cluster reconstruction, for each hit, see if there is another one that appears 32 strips apart, and with charge < 10% of the main signal
 - Work quite well at 0% background (kill ~70% of induced signal, 0.02% real signal)
 - At 100% background, still need to be refined (pile-up effect makes things worse)

Cross Talk Signal

Pedestal Noise (Real Data)

- We assumed uncorrelated Gaussian pedestal noise, but the actual measurement shows a sinusoidal time dependency
- Plot shows GEM pedestal noise measurement, 18 pedestal events with 6 time sample each, separated by big gap (Danning Di)

Pedestal Noise

- If we measure pedestal of one sample for multiple times, the distribution is still Gaussian
- Currently using parameters such that the width is about 20.7 ADC

Gain (Real Data)

- Based on cosmic test from UVa (SoLID-EIC cosmic test at FNAL):
 - MPV for Maximum ADC (maximum among all strip and all time samples) of a cluster should appear at around 200 ADC
 - Distribution should follow Landau distribution

K. Gnanvo, N. Liyanage, V. Nelyubin, C. Gu, Y. Zhao, X. Bai

Gain

- Based on cosmic test at UVa:
 - MPV for Maximum ADC (maximum among all strip and all time samples) of a cluster should appear at around 200 ADC
 - Distribution should follow Landau distribution

Charge Sharing

- There are still a few remaining issues we are working on right now
 - Charge sharing and GEM resolution

GEM Resolution

• There are still a few remaining issues we are working on right now

• Charge sharing and GEM resolution

ADC Distribution on U strips

Initial Estimate On Occupancy and Number of Hits

For SIDIS He3 Configuration, contains cross talk effect

Heaviside										
Thres = 80	GEM 1	GEM 2	GEM 3	GEM 4	GEM 5	GEM 6				
Occupancy (%)	2.84	9.76	4.23	2.67	2.57	1.92				
N Hits	630.6	5577	2129	1334	697	632				

Lorentzian

Thres = 80	GEM 1	GEM 2	GEM 3	GEM 4	GEM 5	GEM 6
Occupancy	3.67	12.72	5.41	3.41	3.16	2.33
N Hits	974	9173	3313	1962	1053	956

The result is obtain with 100% background, pedestal noise sigma = 20 ADC, and the effect of cross talk

SIDIS Tracking at FA

• Condition: 100% background, single electron track (0.9 ~ 7 GeV), pedestal noise = 20 ADC, Lorentzian avalanche model, cross talk effect on, one sample from APV

Vertex Resolution at SIDIS FA

Conclusion for Part I

- New effects and models have been implemented in the GEM digitization program
 - Lorentzian avalanche model
 - Time dependent pedestal noise
 - Cross talk effect
- Digitization still need some work:
 - Charge asymmetry and GEM position resolution need some more study
- Occupancy increase by a factor of ~30%
- Number of hits increase by over 50%
- Tracking is not breaking apart yet, even though performance is worse and four times slower. Should be able to save it

Kalman Filter Algorithm

Kalman Filter: a recursive fitting algorithm based on χ^2 minimization

- Procedure for applying Kalman Filter (KF) for the PVDIS configuration
 - Select seeds from the last three GEM trackers, assuming the track is straight in 3D space
 - Hits on the last two GEMs (very close to EC) are selected based on the EC hit position
 - Using a straight line to connect hits on the third GEM with hits on the last two GEMs, see if it leads to the EC hit
 - Energy measurement from EC and two hits with straight line model are sufficient to initialize KF
 - The rest is taken cared of by KF automatically

SoLID CLEO PVDIS

- At 100% background (50uA current), 2 ~ 6 GeV electrons
- Heaviside avalanche model, no cross talk and pedestal noise simulated. 3 samples from GEM

- Resolution not as good as before, possibly because the tracks are fitted only once
- In previous study for PVDIS, I fitted the track twice in order to optimize the resolution
- For tracking finding phase, optimization of vertex variables is not necessary
- We can make it better offline

Ole's result for the director's review, with Tree Search

Results are quite comparable

Conclusion

- Kalman Filter tracking finding framework for the PVDIS configuration has been set up
- Tested the program with 100% background with the old digitization and no electronic noise simulated
- This result is quite comparable with Ole's result with Tree Search algorithm
- Only progress for the moment is the magnetic field is on
- Execution speed is a lot slower compare to Tree Search (3~4 ms per event with KF)
- It is crucial to study tracking with electronic noise simulated, so this is my next step for tracking