100---

NEUTRON BACKGROUND RADIATION IN SOLID

Lorenzo Zana

Syracuse University

April 13 2012

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

2 NEUTRON INTEGRATED FLUX

③ NIEL (Non Ionizing Energy Loss)

4 CONCLUSIONS

Source term

Problem with Deuterium and FLUKA

- In FLUKA for e- all hadron production is then the result of real gammas produced in electromagnetic interactions interacting with target nuclei.
- Well known problem, implementation is underway from FLUKA develpers
- Really important for Deuterium target.
- Good agreement for Neutron photoproduction on Deuterium.

Measured cross section Neutron photoproduction on Deuterium

200

Source term

Neutron photoproduction on Deuterium GEANT4 vs FLUKA

Baffle design

Baffle design NO SHIELD

CONCLUSIONS

Baffle design

Baffle design SHIELD 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

CONCLUSIONS

Baffle design

Baffle design SHIELD 2

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Full integrated flux

NO SHIELD

◆□> ◆□> ◆三> ◆三> ● 三 のへの

Full integrated flux

Compare Shielding at Baffle 1

590

э.

Full integrated flux

Compare Shielding at Baffle 6

990

э.

⇒ ↓ ≡ ↓ ≡ √QQ

Displacement damage in silicon, on-line compilation

A. Vasilescu (INPE Bucharest) and G. Lindstroem (University of Hamburg), Displacement damage in silicon, on-line compilation

see http://sesam.desy.de/members/gunnar/Si-dfuncs.html

neutrons.xls

for actual use of this tabulation, please refer to: A. Vasilescu and G. Lindstroem Displacement damage in Silicon on-line compilation: http://sesam.desy.de/~gunnar/Si-dfuncs

neutron induced displacement damage in silicon -most reliable data, listed for kinetic energies between 0.1 meV and 10 GeV-P.J. Griffn et al., SAND92-0094 (Sandia Nati. Lab. 93), priv. comm. 1996 A. Konobeyev, J.Nucl.Mater. 186 (1992) 117 M. Huhtinen and P.A. Aamio, NIM A 335 (1983) 580 and private comm.?) 1) bubbino sea tab. A Franz (ALIX STR W), priv. comm. 1997

Griffin		н	Huhtinen		Konobeyev	
Ekin [MeV]	D/(95MeVmb)	Ekin [MeV]	D/(95MeVmb)	Ekin [MeV]	D/(95MeVmb)	
1,025E-10	1,575E-02	8,050E+02	6,004E-01	2,000E+01	2,071E+00	
1,075E-10	1,537E-02	8,150E+02	5,980E-01	2,500E+01	2,049E+00	
1,125E-10	1,503E-02	8,250E+02	5,959E-01	3,000E+01	2,041E+00	
1,175E-10	1,470E-02	8,350E+02	5,942E-01	4,000E+01	2,012E+00	
1,238E+10	1,432E-02	8,450E+02	5,932E-01	5,000E+01	1,805E+00	
1,313E+10	1,391E-02	8,550E+02	5,922E-01	6,000E+01	1,644E+00	
1,388E+10	1,353E-02	8,650E+02	5,912E-01	7,000E+01	1,499E+00	
1,463E-10	1,317E-02	8,750E+02	5,902E-01	8,000E+01	1,378E+00	
1,550E-10	1,280E-02	8,850E+02	5,892E-01	9,000E+01	1,264E+00	
1,650E-10	1,242E-02	8,950E+02	5,883E-01	1,000E+02	1,168E+00	
1,750E-10	1,206E-02	9,050E+02	5,873E-01	1,300E+02	9,740E-01	
1,850E-10	1,172E-02	9,150E+02	5,863E-01	1,600E+02	8,650E-01	
1,950E-10	1,142E-02	9,250E+02	5,854E-01	2,000E+02	7,910E-01	
2,050E+10	1,113E-02	9,350E+02	5,845E-01	2,500E+02	7,330E-01	
2,150E-10	1,087E-02	9,450E+02	5,836E-01	3,000E+02	6,960E-01	
2,250E-10	1,063E-02	9,550E+02	5,828E-01	3,500E+02	6,930E-01	
2,350E+10	1,039E-02	9,650E+02	5,819E-01	4,000E+02	6,850E-01	
2.4765.10	1.0125-02	0.7505+02	5 910E-01	4 5005+02	6 9505-01	

CONCLUSIONS

Displacement damage in silicon, on-line compilation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Integrated flux/cm2 weighted with NIEL curve

NO SHIELD

₹ 9Q@

Integrated flux/cm2 weighted with NIEL curve

Compare Shielding at Baffle 1

э

Integrated flux/cm2 weighted with NIEL curve

Compare Shielding at Baffle 6

200

э

Integrated flux/cm2 weighted with NIEL curve

What is a tolerable level for APV25 (GEM) ?

- CMS experiment total dose expected be around $5 \times 10^{13} \frac{N}{cm^2}$
- CMS experiment Neutron flux picks at 1MeV (curves norm to 1MeV Neutron)
- Our flux is (2000*h* at $100\mu A$) $5 \times 10^{13} \frac{N}{cm^2} \Rightarrow 1.1 \times 10^{-8} \frac{N}{e^- cm^2}$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Conclusions

Outline

- FLUKA and GEANT4 seems to have good Neutron Photoproduction
- Solid PVDIS level seems comparable to CMS levels
- The GEMS seems to be able to tolerate the radiation level