Electro-Production Hall D Generator Update 1

Rakitha Beminiwattha

Overview

- Electro-Production is implemented using the hall D event generator
 - See previous updates on this
- Geant4 (QGSP_BERT) and hall D generators are compared for proton & deuterium targets
- Using Wiser and Hall D generators, pions are generated for scattering angle < 90 deg for 11 GeV electron beam on proton & deuterium 40 cm targets
- Using Geant4 (QGSP_BERT), 11 GeV electron beam incident on proton & deuterium 40 cm targets
- See last talk for initial results

Hadrons from Secondary Target Interactions

- Initially primary vertices generated by hall D electro-prod. generator were placed on an empty target
- Now they are placed in the actual 40 cm proton & deuterium targets
- Only about 0.6 % additional hadron vertices are created in the target

Technical : Handling Geant4 Detector Hits

- The target itself is a sensitive detector and hits are recorded
 - Used these hits to compute rates (cross sections) there were compared between G4 and Hall D
- The way Geant4 sensitive det. record hits, there will be multiple hits recorded for a single hadron track: For example see a sample event,

*	Row	* Instance *	ev.evnum *	* hit.p	hit.pid *	hit.det *	hit.t *	hit.:
*	1 *	0 *	2*:	1.4443016 *	-211 *	666 *	0 *	
*	1 *	1 *	2 * 1	1.4300100 *	-211 *	666 * 0.	1204307 *	
*	1 *	2 *	2 * 1	1.4298311 *	-211 *	666 * 0.	1966750 *	
*	1 *	3 *	2 *	0.1550178 *	2212 *	666 * 0.	1966750 *	

Technical : Handling Geant4 Detector Hits

- The target itself is a sensitive detector and hits are recorded
 - Used these hits to compute rates (cross sections) there were compared between G4 and Hall D
- In this case the primary pion is recorded by hits inside the target
- Therefore target sensitive detector overestimates hadron rates (or xs)
- A detector outside of the target (a sphere around the 40 cm hydrogen target) to detect hadrons coming out of the target
- Use these hadrons to estimate the rates (and xs).
- Then results are compared between Hall D generator and G4

Effect of Target on Hadron Rates : An Observation

- There is a difference between hadrons created inside the hydrogen target and hadrons coming out of the hydrogen target.
- Suppression of hadrons coming outside the target
 - About 4% less hadron tracks come out of the target

Hall D n :: Primary Vertices vs. Vertices Exiting the Target

Bremsstrahlung photon Contribution

• The electro-production cross section due to Bremsstrahlung photons,

$$d\sigma = \sigma_{\gamma}(\omega) \cdot N_{BREMS}(\omega) \frac{d\omega}{\omega}$$
$$N_{BREMS}(\omega) = \frac{d}{X_0} \left(\frac{4}{3} - \frac{4\omega}{3E} + \frac{4\omega^2}{3E^2}\right)$$

- Where X_0 is the radiation length and $d = \rho$.t where ρ is target density and t is target thickness
- For now t = 40 cm was used but that is not the average t for electrons incident on the target

Now t = 20 cm (average thickness)

- Using hall D gen, 1 million hadron events were generated
- Using Geant4, 100 million electrons incident on 40 cm proton target

	Total Proto	Hall D vs. G4			
Pion Type	Wiser xs	Hall D xs	Geant4 xs	agreement	
51	(mb)	(mb)	(mb)	(%)	
pi0*	88.5	21.5	26.5	-19	
pi-	54.6	13.6	13.4	2	
pi+	123.7	29.6	29.3	1	

* It is not trivial to check pi0 cross section directly using outside detector. Therefore cross section is computed from hits inside the target

Rakitha S. Beminiwattha

Geant4 π⁺ Electro-Production :11 GeV electron on Proton

* It is not trivial to check pi0 tracks directly using outside detector. Therefore tracks plotted from hits inside the target

* It is not trivial to check pi0 tracks directly using outside detector. Therefore tracks plotted from hits inside the target

- Using hall D gen, 1 million hadron events were generated
- Using Geant4, 100 million electrons incident on 40 cm deuterium target

	Total Deuter	Hall D vs. G4			
Pion Type	Wiser xs	Hall D xs	Geant4 xs	agreement	
- 71	(mb)	(mb)	(mb)	(%)	
pi0*	189.7	43.0	84.8	-49	
pi-	191.6	43.2	38.1	13	
pi+	192.7	43.2	37.6	15	

* It is not trivial to check pi0 cross section directly using outside detector. Therefore cross section is computed from hits inside the target

* It is not trivial to check pi0 tracks directly using outside detector. Therefore tracks plotted from hits inside the target

* It is not trivial to check pi0 tracks directly using outside detector. Therefore tracks plotted from hits inside the target

Next Steps

- Now agreement between G4 and Hall D is much better
 - I will move forward with following list (from last talk!)
- Implement lund format to generate inputs for GEMC
 - Very soon
- Provide trigger rates
 - Currently I can only do ECAL
 - Need Micheal's assistant for Cerenkov
- Repeat some ECAL studies I have done for understand and optimize ECAL trigger
- Generate ECAL + Cerenkov integrated output
 - To do final trigger rates and other trigger optimizations
 - To do level-3 farm analysis (Alex)

Backups

- Using hall D gen, 1 million hadron events were generated
- Using Geant4, 100 million electrons incident on 40 cm proton target

	Total Proto	Hall D vs. G4			
Pion Type	Wiser xs	Hall D xs	Geant4 xs	agreement	
51	(mb)	(mb)	(mb)	(%)	
pi0	88.5	31.3	26.8	17	
pi-	54.6	20.7	23.5	-12	
pi+	123.7	44.4	50.7	-12	

- Using hall D gen, 1 million hadron events were generated
- Using Geant4, 100 million electrons incident on 40 cm deuterium target

	Total Deuter	Hall D vs. G4			
Pion Type	Wiser xs	Hall D xs	Geant4 xs	agreement	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(mb)	(mb)	(mb)	(%)	
pi0	189.7	62.5	84.6	-26	
pi-	191.6	65.1	73.2	-11	
pi+	192.7	65.1	71.3	-9	

* It is not trivial to check pi0 cross section directly using outside detector. Therefore cross section is computed from hits inside the target

Hall D Generator : Proton Target

Electro-Production π^0 Kinematics from Hall D Generator

Hall D Generator : Proton Target

Electro-Production π^- Kinematics from Hall D Generator

Hall D Generator : Proton Target

Electro-Production π^+ Kinematics from Hall D Generator

Rakitha S. Beminiwattha

Geant4 #+ Electro-Production :11 GeV electron on Deuterium

Hall D vs. Wiser : Deuterium Target

Hall D vs. Wiser : Deuterium Target

Rakitha S. Beminiwattha

Hall D vs. Wiser : Deuterium Target

Rakitha S. Beminiwattha

Generator Output Summary

- Geant4 and Hall generators agrees within 10% - 20%
 - I do not distinguish primary and secondary vertex produced pions in G4 while hall D only produce primary vetices \rightarrow Could explain higher pion xs in G4
- Wiser overestimates pions

	Total Proto	on xs for thet	a < 90 deg	Hall D vs. G4		Total Deuter	ium xs for th	eta < 90 deg	Hall D vs. G4
Pion Type	Wiser xs	Hall D xs	Geant4 xs	agreement	Pion Type	Wiser xs	Hall D xs	Geant4 xs	agreement
	(mb)	(mb)	(mb)	(%)		(mb)	(mb)	(mb)	(%)
pi0	n/a	31.3	26.8	17	pi0	189.7	62.5	84.6	-20
pi-	n/a	20.7	23.5	-12	pi-	191.6	65.1	73.2	-1
pi+	n/a	44.4	50.7	-12	pi+	192.7	65.1	71.3	-!

Total Deuterium Rates for theta < 90 deg							
Wiser Total Hall D Total Geant4 Tota		agreement					
MHz)	(MHz)	(MHz)	(%)				
123166.2	40627.8	53831.7	-25				
126437.2	42695.7	46536.0	-8				
125068.8	42695.7	45337.7	-6				
	/iser Total MHz) 123166.2 126437.2 125068.8	Viser Total Hall D Total MHz) (MHz) 123166.2 40627.8 126437.2 42695.7 125068.8 42695.7	Viser Total Hall D Total Geant4 Tota MHz) (MHz) (MHz) 123166.2 40627.8 53831.7 126437.2 42695.7 46536.0 125068.8 42695.7 45337.7				

-26

-11

-9