PVDIS GEM Occupancies

Rich Holmes SoLID simulation meeting 9/19/2017

Weizhi's talk, March 2017 collaboration meeting

PVDIS Occupancy

- Raw Occupancy with 4 pedestal sigma cut (sigma = 20.7)
- Number of strips for each readout plane:
 - 634 | 743 | 743 | 1195 | 1231
- Mean value of the raw occupancy (in %):
 - u plane: 21.9 | 11.1 | 9.2 | 4.5 | 4.4
 - v plane: 22.1 | 11.1 | 9.2 | 4.4 | 4.4
- 4 sigma cut is used in reconstruction to ensure a better efficiency

6

PVDIS Occupancy

GEM digitization enhancements

- Dead areas can be arbitrary polynomials (Previously rectangles only; In addition, edges deadened to account for GEM frames)
- Strips can be divided

- Note a problem with previous analysis: Baffle was in its new angular position (rotated slightly in 2016 to put photon hot spots into GEM frames) but GEMs were in old positions
- This has impacts on maximum occupancies

Hit positions in GEM 4 (flux detector)

Top: Data from DIS generator, red dots are primary e⁻ with Q²>6 GeV², W>4 GeV, x>0.55 Bottom: Data from GEANT beam on target

Green line: Division segment Blue boxes: Dead regions

GEM 4 200 100 -100-200 200 100 -100-200

-400

600

GEM 1

GEM 2

V Strips, GEMs 1–3

- •4 sigma thresholds
- GEM1 maximum occupancy ~80% with no divided strips, no dead regions
- Dead regions have little effect on maximum occupancies
- Reduced to ~40%–50% with divided strips
- •GEMs 2–3 maximum ~45% -> ~25%

U Strips, GEMs 1–3

- •GEM1 maximum ~40% -> ~30%
- •GEMs 2–3 ~25% -> ~18%

GEMs 4–5 dead regions (no divided strips) reduce maximum, ~14% -> ~8%

- Dead areas reduce (already low) occupancies downstream.
- Divided strips reduce (high) occupancies upstream — is it enough?
- Should we revisit angular offsets? We lose some signal putting upstream photon hot spots into GEM frames. Better to keep them in live area with divided strips?
- Digitization improvements debugged and ready for tracking studies.

Crosstalk — Undivided strips

Clustering/Matching — Undivided strips

(done in tracking package, not digitization)

Strips around a local maximum are mapped to a coordinate in a single dimension. Matched based on strip crossings with other plane to generate hit coordinates in two dimensions.

2 clusters

Substrip 0

Clustering/Matching **Divided strips**

Must develop clusters from nonhomogeneous substrip groups

🚩 Cluster in homogeneous substrip group

Cluster in two substrip groups

Tuster in three substrip groups

Partial 2-dimensional information to be matched with partial 2dimensional information from other plane

Non trivial changes to matching and clustering algorithms