Hadron Elecro and Photo Production Generators: An Update

Rakitha S. Beminiwattha

Department of Physics, Syracuse University

October $15^{\rm th}$, 2015

Hadron Background

Wiser Generator Summary Hall D Generator

Electro-Production Implementation

Initial Results

Wiser Generator

- \blacktriangleright Electro and photo production cross-sections derived using Wiser fits are based on SLAC $\gamma N \to X$
 - SLAC bremsstrahlung beam at endpoint energies of 5, 7, 9, 11, 15 and 19 GeV
 - \blacktriangleright Data were taken for 1 to 8 GeV hadrons with P_{T} values from 0.5 GeV to 2.5 GeV
- \blacktriangleright The fits return the invariant cross section for monochromatic photon beam : $E' \frac{d^3\sigma}{dp'^3}$
- Where (E', p') is the hadron momentum and E_{γ} is the incident photon energy
- ► Wiser fits are available for π[±], K[±], P⁺ and P⁻ (π⁰ cross section is the average of π[±] cross sections)

$$E'\frac{d^3\sigma}{dp'^3} = \left(a_1 + \frac{a_2}{\sqrt{s}} \cdot \left(1 - x_R + \frac{a_3^2}{s}\right)^{a_4} \cdot e^{a_5 \cdot M_L} \cdot e^{a_6 \cdot P_T^2/E}\right)$$

where P_T is the transverse momentum of the hadron and a_i are fit parameters.

Wiser Generator

Photo-Production:

$$\begin{split} \sigma_{\rm i} &= \int {\rm d}\omega N_{\gamma}(\omega) \frac{{\rm d}\sigma_{\rm i}^{\gamma}(\omega)}{{\rm d}\omega} \\ N_{\gamma}(\omega) &= \frac{{\rm d}}{X_0} \frac{\left(\frac{4}{3} - \frac{4\omega}{3{\rm E}} + \frac{4\omega^2}{3{\rm E}^2}\right)}{\omega} \end{split}$$

Electro-Production:

$$\sigma_{\rm i} = \int d\omega N_{\rm EPA}(E_{\rm beam}, \omega) \frac{d\sigma_{\rm i}^{\gamma}(\omega)}{d\omega}$$
$$N_{\rm EPA}(E_{\rm beam}, \omega) \simeq \ln\left(\frac{E_{\rm beam}}{m_{\rm e}}\right) \frac{\alpha}{\pi} \frac{1 + (1 - \frac{\omega}{E_{\rm beam}})^2}{\frac{\omega}{E_{\rm beam}}}$$

Where ω is the photon energy and $E_{\rm beam}$ is the electron beam energy

Rakitha S. Beminiwattha

Issues with Wiser Generator

- The kinematics regions compatible with the wiser fit do not include all the phase-space of SoLID acceptance.
- The validity of the Wiser fit is checked using different data set obtained from SLAC and published in the reference [1] (Boyarski et. al.)

Figure: Cross section ratio for all transverseFigure: Cross section ratio for transversemomentummomentum greater than 0.3 GeV

Rakitha S. Beminiwattha

Hall D Photo-Production Generator

- Hall D generator uses various experimental data to generate photo-production cross sections for photon energies below 3 GeV
- ► It uses modified version of PYTHIA to generate photo-production cross sections for photon energies above 3 GeV
 - ► Hall D generator support from Eugene Chudekov and Mark Ito

Following $\gamma + p^+$ reactions are considered for photon energies below 3 GeV

1.
$$p^+ + \pi^0$$

2. $n + \pi^+$
3. $p^+ + \pi^+ + \pi^- (non - res.)$
4. $p^+ + \rho^0$
5. $\Delta^{++} + \pi^-$
6. $p^+ + \pi^0 + \pi^0$
7. $n + \pi^+ + \pi^0$
8. $p^+ + \eta^0$
9. $p^+ + \pi^+ + \pi^- + \pi^0$
10. $n + \pi^+ + \pi^+ + \pi^-$

Compare Hall D vs. PDG

- Compared total cross sections from Hall D event generator and PDG photo-production cross sections on proton
- \blacktriangleright For γ momentum less than $3~{\rm GeV}$ it uses combination of different models including SAID
- \blacktriangleright For γ momentum greater than $3~{\rm GeV}$ it uses <code>PYTHIA</code>

Photo-Production Total Cross Section Comparison

Figure: Black line : Hall D genertor, Red points : PDG

From Photo-Production to Electro-Production

- Hadron Production can takes place either from real bremsstrahlung photon radiated in the target or from virtual photon interaction approximated by Equivalent Photon Radiator (EPA) approximation
 - Bremsstrahlung contribution is implemented following PDG-2012 [2] and [3]
 - EPA contribution is implemented according to the reference [4]
- Next few slide will summarize the electro-production implementation

Electro-Production with Equivalent Photon Approximation

Figure: Electro-Production (a) and Photo-Absorption (b) equivalency [4]

The electro-production cross section for electron energy E using Equivalent Photon Approximation (EPA),

$$d\sigma = \sigma_{\gamma}(\omega) \cdot dn(\omega)$$
$$dn(\omega) = \int_{q_{min}^2}^{q_{max}^2} dn(\omega, q^2) \qquad \qquad = N_{EPA}(\omega) \frac{d\omega}{\omega}$$

where $\sigma_{\gamma}(\omega)$ is photo-production cross section at photon energy ω and, $N_{EPA}(\omega) = \frac{\alpha}{\pi} \left[\left(1 - \frac{\omega}{E} + \frac{\omega^2}{E^2} \right) ln \frac{q_{max}^2}{q_{min}^2} - \left(1 - \frac{\omega}{2E} \right)^2 ln \frac{(\omega^2 + q_{max}^2)}{(\omega^2 + q_{min}^2)} - \frac{m_e^2 \omega^2}{E^2 q_{min}^2} \left(1 - \frac{q_{max}^2}{q_{max}^2} \right) \right]$ Rakitha S. Beminiwattha SoLID Simulation Meeting October 15th, 2015 9

Electro-Production with Radiated Real Photons

The Bremsstrahlung cross section for electron of energy E traveling inside a material [2]

$$\frac{d\sigma}{d\omega} = \frac{A}{X_0 N_A \omega} \left(\frac{4}{3} - \frac{4\omega}{3E} + \frac{4\omega^2}{3E^2}\right)$$

The electro-production cross section due to Bremsstrahlung photons,

$$d\sigma = \sigma_{\gamma}(\omega) \cdot N_{BREMS}(\omega) \frac{d\omega}{\omega}$$
$$N_{BREMS}(\omega) = \frac{d}{X_0} \left(\frac{4}{3} - \frac{4\omega}{3E} + \frac{4\omega^2}{3E^2}\right)$$

Where X_0 is the radiation length and $d = \rho \cdot t$ where ρ is target density and t is target thickness

Electro-Production with Hall-D Generator

- Photon energy is sampled using electro-production cross section weighted distribution
 - Where the total cross section is the sum of real (Bremsstrahlung) and virtual (EPA) contributions
- ▶ 11 GeV electron beam (50 μ A) is incident into a 40 cm hydrogen target

Figure: Hall D generator now samples the photon energy using electro-production cross section weighted distribution

Hall D Electro-Production : π^0

Electro-Production π^0 Kinematics from Hall D Generator

Figure: π^0 Only for $\theta < 90^0$ and P < 2 GeV. Total cross-section is $\sim 30 \ \mu b$ for this limited kinematic phase-space

Initial Results

Geant4 Electro-Production : π^0

Figure: π^0 Only for $\theta < 90^0$ and P < 2 GeV. Total cross-section is $\sim 24~\mu b$ for this limited kinematic phase-space

Rakitha S. Beminiwattha

October 15th, 2015

Initial Results

Wiser Electro-Production : π^0

Figure: Using Std. Wiser Generator, the total cross section is $\sim 80 \mu b$

Next-Steps

At present the Hall D based MC generator is a standalone program that generate final state hadrons for 11 GeV electron beam incident on 40 cm liquid hydrogen target. Following is list of short term goals with this generator.

- Use final state pion distributions from Hall D based MC generator as an input to Remoll-SoLID (SoLID Geant4 simulation package) to obtain hadron background
 - This step requires few technical implementation to Remoll-SoLID to read above input
- ► Compare new hadron background rates with Wiser background rates
- Repeat a trigger rate estimation study for updated hadron background

Wiser Generator to Get Total Photo-Production Cross Sections

- \blacktriangleright Wiser fits for electron production cross-sections are based on SLAC $\gamma N \rightarrow X$
- \blacktriangleright The fits return the invariant cross section for monochromatic photon beam : $E' \frac{d^3\sigma}{dp'^3}$
- Where (E', p') is the hadron momentum and E_{γ} is the incident photon energy
- \blacktriangleright The total Photo-Production cross section for a monochromatic photon beam for i^{th} type interaction,

$$\sigma_{i}(E_{\gamma}) = \int_{phase-space} E' \frac{d^{3}\sigma}{dp'^{3}} d{p'}^{3}$$

- Where subscript i is,
- **1**. $i = 0, 1 : \pi^{\pm}$
- **2**. $i = 2, 3 : K^{\pm}$
- 3. ${\rm i}=4,5$: ${\it P}^+$ and ${\it \bar{P}}^-$

 π^0 cross section is the average of π^\pm cross sections

Photo-Production with Radiated Real Photons

The Bremsstrahlung cross section for electron of energy E traveling inside a material [2]

$$\frac{d\sigma}{d\omega} = \frac{A}{X_0 N_A \omega} \left(\frac{4}{3} - \frac{4\omega}{3E} + \frac{4\omega^2}{3E^2}\right)$$

The electro-production cross section due to Bremsstrahlung photons,

$$egin{aligned} d\sigma &= \sigma_\gamma(\omega)\cdot N_\gamma(\omega)rac{d\omega}{\omega} \ N_\gamma(\omega) &= rac{d}{X_0}\left(rac{4}{3}-rac{4\omega}{3E}+rac{4\omega^2}{3E^2}
ight) \end{aligned}$$

Where X_0 is the radiation length and $d = \rho \cdot t$ where ρ is target density and t is target thickness

EPA Photon Spectrum

Figure: Photon Spectrum $N_{EPA}(\omega)$

Bremsstrahlung Photon Spectrum

Figure: Photon Spectrum $N_{BREMS}(\omega)$

Complete Photon Spectrum

Figure: Photon Spectrum $N_{EPA}(\omega) + N_{BREMS}(\omega)$ for electron incident on a proton target

A. M. Boyarski, D. H. Coward, S. D. Ecklund, B. Richter, D. J. Sherden, R. H. Siemann, and C. K. Sinclair.

Inclusive photoproduction of charged particles in the forward hemisphere. *Phys. Rev. D*, 14:1733–1771, Oct 1976.

J. Beringer et al.

Review of particle physics. *Phys. Rev. D*, 86:010001, 2012.

Yung-Su Tsai.

Pair production and bremsstrahlung of charged leptons. *Rev. Mod. Phys.*, 46:815–851, Oct 1974.

V.M. Budnev, I.F. Ginzburg, G.V. Meledin, and V.G. Serbo. The two-photon particle production mechanism. physical problems. applications. equivalent photon approximation. *Physics Reports*, 15(4):181 – 282, 1975.