Hyperon Production Simulation Updates (K⁺ Σ^0 , K⁺ Λ^0 , K⁰ Σ^+ rates)

Ye Tian June 27, 2017

Major Concern

Background effects:

The weak decays of the hyperons preferentially emit pions along the direction of the hyperon spin, inducing a helicity dependent background. The LGC is the device potentially most sensitive to this false asymmetry. (LGC threshold ~50MeV)

The background asymmetry: The measured asymmetries are at 5x10⁻³ level. We would like asymmetry in the LGC singles rate to be at the 10⁻⁴ level (arises from the dead time caused by the accidental singles rate in the LGC).

Hyperon Event Generator

- Electroproduction (available from HallB hyperon group and the generator are checked with data.) with Ebeam=11GeV, 3.4 GeV<Q²<12 GeV, and threshold (GeV) <W< 2.835 GeV. (https://userweb.jlab.org/~golovach/ev_gen/piN_KY/)</p>
- Sremsstrahlung photoproduction event generator that is based on the Ugent model: *Phys. Rev. C73,045207(2006) and Phys. Rev. C75,045204(2007)* (http://rprmodel.ugent.be/calc/ cross section tables) with Ebeam=11GeV and 1.61(9)GeV<W<4.65 GeV. Two versions are available:

RPR-2007 version for channels: $\gamma p \rightarrow K^+ \Lambda^0$, $K^+ \Sigma^0$ and $K^0 \Sigma^+$

RPR-2011 version only for channels: $\gamma p \rightarrow K^+ \Lambda^0$

Electroproduction Extrapolation of the cross section into larger W region (from W-dependence of the photoproduction data)

V. Klimenko, E. Golovach, and V. Mokeev (Mocow State University and JLab

RPR-2007 Version model and data comparison

Figure 1: (color online). The $p(\gamma, K^+)\Lambda$ differential cross section as a function of $\cos \theta_K^*$ for the laboratory photon-energy bins $\omega_{\text{lab}} = 1575 \text{ MeV}$, 1875 MeV and 2175 MeV. The line denotes the RPR-2007 result and the data are from references [32+35]. The RPR-2007 model is optimized against the $\cos \theta_K^* > 0.35$ data (indicated with the arrow).

https://arxiv.org/abs/1205.2195v3

It turns out that RPR-2007 version is constrained to forward angle ($\cos\theta_k^* > 0.35$).

RPR-2011 Version model and data comparison

Figure 11: (color online). Angular dependence of the differential cross section at various incident photon energies ω_{lab} . The full red line represents the RPR-2011 model, the blue dashed line corresponds with Regge-2011. Data are from Refs. 32+35.

https://arxiv.org/abs/1205.2195v3

It turns out that RPR-2011 version is consistent with data, but it is only available for $\gamma p \rightarrow K^+ \Lambda^0$ channel now.

Part I

$\mathrm{K}^{\scriptscriptstyle +}\Lambda^0$

Electro-and photon-production simulation comparison

$K^+\Lambda^0$ simulation

• The electroproduction simulation condition: e^{-} beam E_{beam}=11 GeV, 3.4GeV²<Q<12GeV², and 1.61 GeV<W<2.835 GeV

The photon production simulation condition:

The number of bremsstrahlung photons with energy between ω_{max} and ω_{min}

$$n_{r} = \frac{4d}{3X_{0}} \left[ln \frac{\omega_{max}}{\omega_{min}} - \frac{\omega_{max} - \omega_{min}}{E} + \frac{3(\omega_{max}^{2} - \omega_{min}^{2})}{8E^{2}} \right]$$
$$\frac{dn}{d\omega} = \frac{N(\omega)}{\omega} = \frac{4d}{3X_{0}\omega} \left(1 - \frac{\omega}{E} + \frac{3\omega^{2}}{4E^{2}} \right)$$
$$N(\omega) = \frac{d}{X_{0}} \left(\frac{4}{3} - \frac{4\omega}{3E} + \frac{\omega^{2}}{E^{2}} \right)$$
$$d = \rho \cdot t \text{ where } \rho \text{ is target density and } t \text{ is target thickness}$$

Event Generator Scheme

Model table: W, $\cos\theta_k$, σ , $d\sigma/d\Omega$

 $\Upsilon P \longrightarrow K^+ \Lambda^0$ Simulation Results

$\Upsilon P \longrightarrow K^+ \Lambda^0$ Simulation Results

$\Upsilon P \longrightarrow K^+ \Lambda^0$ Simulation Results

$\Upsilon P \longrightarrow K^+ \Lambda^0$ Simulation Results

- Gem: flux hit detector ID = 1, sub-detector ID=1, 2, 3, 4, 5, subsubdetector=1
- Lgc: flux hit detector ID = 2, sub-detector ID=1, 2. subsubdetector=1
- Ecal: flux hit detector ID = 3, sub-detector ID =1, and subsubdetector=1

$ΥP->K^+Λ^0$

π^0 Momentum Distribution in the Lab Frame

$K^+\Lambda^0$ Rate Comparison

Bremsstrahlung photoproduction

(MHz)	Rate	Trigger rate PMT>=2; Nphe>=2
Gem (3)	0.1896+0.0207+0.0107=0.22	
Lgc	0.1893+0.0205+0.0112=0.22	4.69x10 ⁻³
Ecal	0.1084+0.0057+0.0033=0.12	
Electroprod	uction	
(MHz)	Rate	Trigger rate
Gem (3)	8.02x10 ⁻⁴	
Lgc	8.08x10 ⁻⁴	1.24x10 -5
Ecal	4.45x10 ⁻⁴	
Rate = $\frac{\int}{N_{tot}^g}$	$\frac{\mathcal{L}\frac{d\sigma}{d\Omega}d\Omega}{\frac{en}{otal}N_{file}}, \ \mathcal{L} = \frac{50 \times 10^{-6} \times 40 \times 0.169 \times 6.00}{1.6 \times 10^{-19} \times 2.014 c}$	$\frac{02 \times 10^{23}}{m^2 s}$ 18

comparison

(MHz)	Rate	Trigger rate
Gem (3)	0.1896+0.0207+0.0107=0.22	
Lgc	0.1893+0.0205+0.0112=0.22	4.69x10 ⁻³
Ecal	0.1084+0.0057+0.0033=0.12	

PVDIS ECAL Trigger Rates

- Only 1 GeV or larger momentum tracks can initiate a trigger
- Low energy (less than 1 GeV) tracks contribute to trigger as pile up to high momentum tracks by increasing energy deposit in trigger windows
 - ▶ When only background tracks < 1 *GeV* incident on ECAL the total trigger rate is about 0.06 MHz (or 0.002 MHz per sector)
 - Only 2 out of 35070 windows triggered by low momentum pile up at higher radii (very low statistics)
 - Low momentum pions at higher radii are very rare
- ► Total (background+DIS) trigger rate is 5.1 MHz (or 0.17 MHz per sector)
- From Wiser based backgrounds : Total (background+DIS) trigger rate is 8.7 MHz (or 0.29 MHz per sector)
 - \blacktriangleright This includes $3.1~{
 m MHz}$ background trigger due to pileups from tracks < 1~GeV

PID	Total Rate	Trigger Rate
	(MHz)	(MHz)
π^{-}	280	4.5
π^+	150	0.3
DIS	0.44	0.26
Total ECAL Trigger		5.127

Part II

Other Hyperon Production Channel Study

RPR-2011 version: $\Upsilon P \rightarrow K^+ \Lambda^0$

ΥΡ->Κ ⁺ Σ ⁰	comparison		
(MHz)	Rate	Trigger rate	
Gem (3)	0.292		
lgc	0.292	6.11x10 ⁻³	
ec	0.141		

ΥΡ->Κ ⁰ Σ+		
(MHz)	Rate	Trigger rate
Gem (3)	0.077	
lgc	0.077	1.289x10 ⁻³
ec	0.026	

Summary						
(MHz)	VHz) $\Upsilon P \rightarrow K^+ \Sigma^0$ $\Upsilon P \rightarrow K^+ \Lambda^0$ $\Upsilon P \rightarrow K^0 \Sigma^+$					
lgc Trigger rate	6.11x10 ⁻³	4.69x10 ⁻³	1.289x10 ⁻³			

Based on your note: Hyperon Production and Asymmetries

9 Decay of the Σ^0

The Σ^0 decays to the Λ via a M1 transition [3]. According to Ref [4], the P_z of the Λ is -1/3 of the P_z of the parent Σ^0 . Since the Σ^0 has the same production asymmetry near threshold, then the direct Λ and the Λ 's from Σ^0 decay have opposite polarization directions and there is cancellation. The Σ^+ has the same sigh production asymmetry but the opposite analyzing power for π^0 decay, so this reduces the asymmetry.

The asymmetry in the background is determined by decay asymmetry parameters a^0 and by the cos θ of the decay π^0

Hyperon	Mass	c au	F_0	a^0	p_0	a^{\pm}	p_{\pm}
Λ	1115.6	$8 \mathrm{cm}$	0.357	0.65	101	0.64	104
Σ^+	1189.4	2.4 cm	0.515	-0.98	189	0.068	185
Σ^0	1192.5	$\rightarrow \gamma \Lambda$					
Σ^{-}	1197.4	4.4 cm	0	-	-	-0.068	193
Δ	11232	0	0	-	227	-	227

Need the $\cos\theta_{\pi}$ information to study the cancellation effect.

Any comments and suggestions ?

Backup

$\gamma_{_{1}}$ Momentum for $\Lambda0$ production

The Generated Σ^0 Momentum Distributions

The Generated Σ^+ Momentum Distributions

2Y event rate per sector

K ⁺ Λ ⁰ ↓π ⁰ n ↓2Υ	Rate (MHz) mtid=5 and 6	Trigger rate (MHz) PMT>=2; Nphe>=2
Gem (3)	0.1896	
lgc	0.1893	3.946x10 ⁻⁴
ec	0.1084	0

Rate =
$$\frac{\int \mathcal{L} \frac{d\sigma}{d\Omega} d\Omega}{N_{total}^{gen} N_{file}}$$
, $\mathcal{L} = \frac{50 \times 10^{-6} \times 40 \times 0.169 \times 6.02 \times 10^{23}}{1.6 \times 10^{-19} \times 2.014 \ cm^2 s}$

e⁻ event rate per sector

e⁺ event rate per sector

Bremsstrahlung Photon Energy

