MRPC rate

Sanghwa Park

Supermodule design

- # supermodules: 50
- # strips: 33
- Strip width: 25mm, gap: 3mm

- Model #1:
 - Consistent top and bottom
 margins → 36.5 mm for each edge

Supermodule design

- # supermodules: 50
- # strips: 33
- Strip width: 25mm, gap: 3mm

- Model #2:
 - Consistent strip gap width within a supermodule \rightarrow 109.5 mm for the most inner and outer edges

Assume modules are overlapping to reduce blind region

Supermodule design

- # supermodules: 50
- # strips: 33
- Strip width: 25mm, gap: 3mm

- Model #3:
 - Start the first strip at R=1050 mm (details in the next slide)

Assume modules are overlapping to reduce blind region

Module design

- Minimum radial position of the first trip in order to set it to 130 mm:
 - R_{bottom}: 1033.15 mm (at least)
- 11th strip is supposed to have a strip length of 170 mm according to the pCDR
- With this initial condition, 11^{th} strip would be located at R_{bottom} of $1033.15 + 250 + 30 \approx 1313$
- To follow the pCDR design: 25 mm strip width, 3mm interval → the length of 11th strip would be limited to 165.2 mm instead of 170 mm.
 - In order to have the 11th strip with a length of 170 mm, the bottom of the first strip should be located at least at 1071 mm from the center.
- At R = 960 mm, the maximum strip length is ~ 120.8 mm
- The bottom/top edge design would depend on physics?

Strip mapping and finding a fired strip

Figure 108: The structure of the MRPC prototype

Primary ionization Z positions

→ randomly distributed (Poisson)

Line equation: hit position at the virtual front plane and average position inside the gap

X, Y positions of primary ions

Charge sharing

- Uncounted # of hits (not particles): ~ 26% of total hits from all 10 gaps
- strip spacing: 3mm
- For now, hits that are recorded at this region are assigned to a nearby strip.

model2

