Event generator comparison

Zhiwen Zhao 2013/12/03 original 2014/02/12 update 2014/11/04 update

Intro

• We are trying to compare particle rate between event generators and data

 All code mentioned can be obtained from https://hallaweb.jlab.org/wiki/index.php/Soli d_eventgenerator

Wiser fit

- Wiser fit is based on photon on proton target from SLAC data
- It can output pip,pim,kp,km,p,anti-p result
- no result on neutron
- For electron on nuclei target, one can approximate electron with virtual photon flux
- This way we can represent different targets solely in rad_len and the output is linearly proportional to rad_len
- Here is one example of estimating rad_len

"RAD_LEN (%) is the radiation length of target, including internal (typically 5%)

= .5 *(target radiation length in %) +5.

= 100. IF BREMSTRULUNG PHOTON BEAM OF 1 EQUIVIVENT QUANTA"

• Also one need to estimate rate on neutron somehow

Whitlow and qfs fit

- Whitlow fit gives only DIS electron rate on proton and deuteron
- qfs fit gives general electron rate on proton and deuteron
- both have nothing to do with target rad_len

Generator "eicRate"

- e rate (including eDIS and others) based on CTEQ6 PDF on proton or neutron
 - (others including inelastic and resonance region, the estimation could be off)
- eES rate based on formula on proton or neutron
- hadron rate based on Wiser fit
 - pip,pim,Kp,Km,p and p-bar on proton from Wiser fit directly
 - pi0 rate = (pip+pim)/2 , Ks,Kl rate = (Kp+Km)/2
 - pip or pim rate on proton = pim or pip rate on neutron
 - Kp or Km rate on proton = Km or Kp rate on neutron
 - p rate on proton = p rate on neutron
 - Randomly choose proton or neutron as target for each event or take average
 - It can take general target with these consideration

radlen= 0.5*rad*100.*(4.0/3.0) + intrad*100.0

= 8.22 (40cm LD2 with rad=40/745.4=0.0537 and 11GeV beam)

- = 6.14 (20cm LD2 with rad=20/745.4=0.0268 and 6GeV beam)
- = 4.69 (40cm 10amg He3 with rad=40/(67.42/1.345e-3)=0.8e-3 and 11GeV beam)
- = 4.40 (40cm 10amg He3 with rad=40/(67.42/1.345e-3)=0.8e-3 and 6GeV beam)

Intrad = 2.0*ln(e_lab/0.000511)/(137.0*3.14159)

- = 0.0464 (11 GeV beam)
- = 0.0435 (6 GeV beam)

See rad_len formula in backup slides from Seamus

All Use "nucleon luminosity = A*nuclei luminosity" for normalization

Generator "single_rate" by Xin Qian

- eDIS 1 based on whitlow fit on proton or deuteron
 - Rate of He3 = rate of proton + rate of deuteron
- eDIS 1 based on qfs fit on proton or deuteron
 - Rate of He3 = rate of proton + rate of deuteron
- Hadron based on wiser fit
 - has no treatment for rate on neutron, only can do fixed target
 - rad_len used
 - Hydrogen target

rad_len=2.7 + 0.5*(15.*0.0708)/61.28*100.=3.57

Deuterium target

```
rad len=(2.7 + 0.5*(12.*0.169)/122.4*100.)*2=7.06
```

He3

rad_len= 3.57+ 7.06 = 10.63

- It use nuclei luminosity for normalization
- Beyond "single_rate", Xin has additional correction from comparison between the calculation and 6GeV Transversity exp data on He3

Rate on He3

He3 hadron rate difference between "eicRate" and "single_rate" with 6GeV beam

- Both are based on wiser fit, but use it differently, so they have different distribution and normalization factor
- "eicRate" has He3 rad_len=4.40
- "eicRate" uses "nucleon luminosity = A*nuclei luminosity" for normalization where A=3
- "eicRate" assumes "pip or pim rate on proton = pim or pip rate on neutron", so its distribution is NOT exactly like wiser fit
 - its pip rate ~ (2/3 pip_wiser+1/3pim_wiser)
 - its pim rate ~ (2/3 pim_wiser+1/3pip_wiser)
- "single_rate" uses rad_len=10.63
- "single_rate" uses "nuclei luminosity" for normalization
- "single_rate" treats rate on neutron the same as proton, so its distribution is exactly like wiser fit
- At least, "eicRate" over "single_rate w/o correction" has a factor 1.24=4.40*3/10.63

Xin's He3 wiser pion correction factor (Mom VS theta) for 11GeV and 6GeV

- factor = 2.33369*exp(-0.508963*mom*sin(theta/180.*3.1415926)*
 sqrt(0.938*0.938+2.*0.938*5.892)/sqrt(0.938*0.938+2.*0.938*ebeam));
- if (factor<=1) factor=1
- At 10 deg and 1GeV, it is 2.14 for 6GeV beam, 2.19 for 11GeV beam
- At 10 deg and 2GeV, it is 1.96 for 6GeV beam, 2.04 for 11GeV beam
- At 16 deg and 2.35GeV, it's 1.68 for 6GeV beam (6GeV Transversity condition)

He3 Hadron rate

He3 Hadron rate ratio

eicrate /(Single_rate w/o factor) pip 1.5 on average theta(deg) pim eicRate pim rate om/GeV) theta/deg) eicRate p rate 120 40 140 160 180 theta(deg) eicRate Kp rate Кр theta(deg) eicRate Km rate Km

100

160

theta(deg)

р

eicrate/(single_rate with factor)

theta(deg)

My calculation using "single_rate" for 6GeV Transversity Condition

- method
 - Calculate Xsec at one fixed kinematic point, then multiply by luminosity and phase space
 - No radiative correction
 - same method used by Xin
- Assume
 - 6 GeV beam, theta 16 deg, Mom 2.35GeV
 - Current 10uA, target 33cm 10amg He3 target
 - nuclei Lumi 0.557e36/cm2/s
 - = 10e-6/1.6e-19*33*1.345e-3*6.02e23/3
 - Phase space 0.0013 according to Zhihong's simulation (comparing to Xin's estimation 0.0016 = 6.7msr*2.35GeV*10%)
- Result

	e-	Pi+	Pi-	К+	К-	р
Xsec (nb/GeV-sr)	134	1540	916	309	4.2	889
Rate(uC)	9.73	93.19	55.4	5.95	0.81	64.36
Data	12.4	54.8	34		1.34	49.6

- e- rate by whitlow fit, hadron rate by wiser fit with radlen=10.63
- Get rate by "./main 0 557 6 1 1 1.85 2.85 15.5 16.5" on proton and "./main 1 557 6 1 1 1.85 2.85 15.5 16.5" on deuteron, add both to get rate on He3.
- (sin(16/180*3.1416)*1/180*3.1416*2*3.1416)*1 =0.0302 is phase space used in the code
- 10uA current is 10uC/s
- Pion decay 0.8357, kaon decay 0.267
- For example (1.46e-3+8.08e-4)*1e6/0.0302*0.0013/10=9.73 /uC for e-

HRS rates comparison

Calculations

For hadron rate, wiser code is used. For electronr rate, whitlow code is used. Condition: 16 degrees, 2.35 GeV/c, Q2 is about 1 Target density: 10 atm @ 27 degrees. Pion decay: $2.6^{+}2.35/0.14^{+}3 = 131 \text{ m}, \exp(-23.5/131) = 0.8357$ Kaon decay: $2.35^{+}1.24/0.49^{+}3 = 17.8 \text{ m}, \exp(-23.5/17.8) = 0.267$ Acceptance: 6.7 msr for solid angle, +-5% momentum acceptance Target length: 33 cm

Data

For negative mode, we used run 4015. For position mode, we used run 4223. Cuts: Trigger 3, edtpl, trip, acceptance, ntrack == 1, vertex:33 cm, momentum +-5%, PID cuts (electron): A1>150 && Cer > 300 && E/p > 0.6 PID cuts (Proton/Kaon): A1<150 && Cer < 300 && E/p < 0.6 Correction: livetime

Results: Unit: events/uC

	Pi+	Pi-	e-	K-	Proton
Calulation	105	62.4	11.6	0.88	71
Data	54.8	34	12.4	1.34	49.6

Conclusion

electron rate, calculation is reasonable. pion rate, calcultion overestimates by a factor of 2. proton rate, calculation overestimates by 45% kaon, hard due to dirty PID

He3 hadron rate

- "eicRate" over "single_rate w/o correction" has a factor 1.24
- single_rate correction factor is 2 on average
- "eicRate" over "6GeV Transversity data" is a factor 2.48=1.24*2
- So we may use 40% (~ 1/2.5) hadron rate from "eicRate" for 6GeV beam
- but it's not clear how it would be for 11GeV
- It would be good to do a direct comparison between "eicrate" and data

He3 e rate W=2 red line, Q2=1 black line

- "single_rate" whitlow covers DIS only, no output for Q2<1 or W<2
- In DIS, "eicrate" and "single_rate" whitlow ratio is around 1
- Compare sum of rate between of 7-24 degree and W>2, Q2>1. The result of "eicRate" is 1.2 times of "single_rate" whitlow

He3 e rate

- "eicRate" and "single_rate" use different fit to estimate, "eicRate" over "single_rate" is 1.2 for SoLID kinematics
- "single_rate" whitlow comparing to 6GeV Transversity data needs a correction factor 1.25
- If we can combine these two, "eicRate" is close to data now
- It would be good to do a direct comparison between "eicrate" and data

Rate on LD2

LD2 hadron rate difference between "eicRate" and "single_rate" with 6GeV beam

- Both are based on wiser fit, but use it differently, so they have different distribution and normalization factor
- "eicRate" has rad_len=6.14 for 20cm LD2
- "eicRate" uses "nucleon luminosity = A*nuclei luminosity" for normalization where A=2
- "eicRate" assumes "pip or pim rate on proton = pim or pip rate on neutron", so its distribution is NOT exactly like wiser fit
 - its pip rate ~ (1/2 pip_wiser+1/2pim_wiser)
 - its pim rate ~ (1/2 pim_wiser+1/2pip_wiser)
- "single_rate" uses rad_len=7.06
- "single_rate" uses "nuclei luminosity" for normlization
- "single_rate" treats rate on neutron the same as proton, so its distribution is exactly like wiser fit
- At least, "eicRate" over "single_rate" has a factor 1.74=6.14*2/7.06

My calculation using "single_rate" for 6GeV PVDIS Condition "DIS#1"

- method
 - Calculate Xsec at one fixed kinematic point, then multiply by luminosity and phase space
 - No radiative correction
 - same method used by Xin
- Assume
 - 6.067 GeV beam
 - Current 100uA, target 20cm LD2
 - nuclei Lumi 0.635e39/cm2/s =100e-6/1.6e-19*20*0.169*6.02e23/2
 - Phase space by Zhihong's simulation: 0.0022 for DIS#1, 0.0015 for DIS#2

Kine#	HRS	E_b (GeV)	θ_0	E_0^\prime (GeV)	R_e (kHz)	R_{π^-}/R_e
DIS#1	Left	6.067	12.9°	3.66	≈ 210	pprox 0.5
DIS#2	Left & Right	6.067	20.0°	2.63	≈ 18	≈ 3.3
RES I	Left	4.867	12.9°	4.0	≈ 300	$< \approx 0.25$
RES II	Left	4.867	12.9°	3.55	≈ 600	$< \approx 0.25$
RES III	Right	4.867	12.9°	3.1	≈ 400	$< \approx 0.4$
RES IV	Left	6.067	15°	3.66	≈ 80	$< \approx 0.6$
RES V	Left	6.067	14°	3.66	≈ 130	$< \approx 0.7$

Table 1

Overview of kinematics settings during the experiment, including: the beam energy E_b , the spectrometer central angle setting θ_0 and central momentum setting E'_0 , the observed electron rate R_e and the π^-/e ratio R_{π^-}/R_e .

Xiaochao's summary of data

DIS#1	e-	Pi+	Pi-	K+	К-	р	DIS#2	e-	Pi+	Pi-	K+	К-	р
Xsec (nb/GeV -sr)	225.25	135.75	80.25	43.75	2.875	80.25	Xsec (nb/GeV -sr)	30.2	124.4	75.6	33.1	3.1	121
Rate (kHz)	315.25	158.75	93.5	16.675	1.065	112.25	Rate (kHz)	28.8	99.5	60.5	8.38	0.802	116
Data	210		105				Data	18		59.4			

- e- rate by whitlow fit, hadron rate by wiser fit with radlen=7.06
- Get rate by "./ main 1 0.635e6 6.067 1 1 3.16 4.16 12.4 13.4" for DIS#1, "./main 1 0.635e6 6.067 1 1 2.13 3.13 19.5 20.5" for DIS#2
- (sin(12.9/180*3.1416)*1/180*3.1416*2*3.1416)*1=0.0245 for DIS#1 and
 (sin(20.0/180*3.1416)*1/180*3.1416*2*3.1416)*1=0.0375 for DIS#2, phase space used in the code
- Pion decay 0.8357, kaon decay 0.267
- For example, 3.51*1e6/0.0245*0.0022/1e3=315kHz for e-

LD2 hadron rate

- "eicRate" over "single_rat" has a factor 1.74
- single_rate seems reproduce 6GeV PVDIS data at DIS region well
- "eicRate" over "6GeV PVDIS data" is a factor 1.74
- So we may 60% (~ 1/1.74) hadron rate from "eicRate" for 6GeV beam
- but it's not clear how it would be for 11GeV
- It would be good to do a direct comparison between "eicrate" and data

LD2 e rate (unfinished)

- "eicRate" and "single_rate" use different fit to estimate
- "single_rate" whitlow comparing to 6GeV PVDIS data needs a correction factor 0.65

 It would be good to do a direct comparison between "eicrate" and data

backup

Code "single_rate" result

- [zwzhao@lily single_rate]\$./main 0 557 6 1 1 1.85 2.85 15.5 16.5
- use mom and theta as variables
- mom_min 1.85000002 mom_max 2.84999990 theta_min_deg 15.5000000 theta_max_deg 16.5000000
- Electron from whitlow : 8.07928212E-04 MHz
- Electron from qfs : 7.99543574E-04 MHz
- Positive Pion from wiser: 8.67747795E-03 MHz
- Negative Pion from wiser: 5.17326035E-03 MHz
- Proton from wiser : 5.01987291E-03 MHz
- Positive Kaon from wiser: 1.74075132E-03 MHz
- Negative Kaon from wiser: 2.36223714E-04 MHz
- zwzhao@lily single_rate]\$./main 1 557 6 1 1 1.85 2.85 15.5 16.5
- use mom and theta as variables
- mom_min 1.85000002 mom_max 2.84999990 theta_min_deg 15.5000000 theta_max_deg 16.5000000
- Electron from whitlow : 1.46477344E-03 MHz
- Electron from qfs : 1.72863191E-03 MHz
- Positive Pion from wiser: 1.71696413E-02 MHz
- Negative Pion from wiser: 1.02360398E-02 MHz
- Proton from wiser : 9.93254315E-03 MHz
- Positive Kaon from wiser: 3.44432797E-03 MHz
- Negative Kaon from wiser: 4.67402628E-04 MHz
- [zwzhao@lily single_rate]\$./main 1 0.635e6 6.067 1 1 3.16 4.16 12.4 13.4
- use mom and theta as variables
- mom_min 3.16000009 mom_max 4.15999985 theta_min_deg 12.3999996 theta_max_deg 13.3999996
- Electron from whitlow : 3.50617242 MHz
- Electron from qfs : 4.11271048 MHz
- Positive Pion from wiser: 2.11581039 MHz
- Negative Pion from wiser: 1.24890971 MHz
- Proton from wiser : 1.24679077 MHz
- Positive Kaon from wiser: 0.682648838 MHz
- Negative Kaon from wiser: 4.33244333E-02 MHz
- [zwzhao@lily single_rate]\$./main 1 0.635e6 6.067 1 1 2.13 3.13 19.5 20.5
- use mom and theta as variables
- mom_min 2.13000011 mom_max 3.13000011 theta_min_deg 19.5000000 theta_max_deg 20.5000000
- Electron from whitlow : 0.719959378 MHz
- Electron from qfs : 0.921629548 MHz
- Positive Pion from wiser: 2.96858835 MHz
- Negative Pion from wiser: 1.81487012 MHz
- Proton from wiser : 2.89821553 MHz
- Positive Kaon from wiser: 0.783541083 MHz
- Negative Kaon from wiser: 7.48522878E-02 MHz

Zhihong Ye' simulation of HRS acceptance

 6GeV Transversity (16deg, 2.35GeV) Deltap = ± 6% Theta = ± 90mrad Phi = ± 45mrad VZ = ± 16.5 cm acceptance of this phase space 0.276781 effective phase space 0.00126 =180e-3*90e-3*0.276781*2.35*0.12

6GeV PVDIS
 Phase Space is: Dp = ± 6%, Theta = ± 90mrad, Phi = ± 45mrad, VZ = 20cm

- DIS #1, P0 = 3.66, Theta = 12.9, the acceptance is 0.304386
 effective phase space 0.0022=180e-3*90e-3*0.304386*3.66*0.12
- DIS #2, P0 = 2.63, Theta = 20.0, the acceptance is 0.292408
 effective phase space 0.0015=180e-3*90e-3*0.292408*2.63*0.12
- NOTE that I use a much larger phase space that the HRS can accepted so we can cover any possible way the events going through the HRS, like using very long target. If we use a smaller phase space, the acceptance value could be smaller, but the effective phase space (= full phase space*acceptance) should be a constant.

Seamus's slides about "eicRate"

Generators

- Need Λ decay generator
- Pion asymmetry generator
- Add in radiative effects into DIS?

Issues with pion rates

- Used "Wiser code", based on $\gamma {\it N} \rightarrow \pi^{\pm}$ cross sectino fits from SLAC
- Brehmstralung from target for photoproduction, Weizsacker-Williams for electroproduction
- Found inconsistencies in calculations

π cross section calculations

Photoproduction:

$$\sigma_{\pi}^{\text{photo}} = \int dk \rho_{\gamma}(k) \frac{d\sigma_{\pi}(\gamma(k)N \to \pi)}{dk}$$
$$\rho_{\gamma}(k) = \frac{t}{X_0} \frac{\frac{4}{3} - \frac{4}{3}x + x^2}{E_{\text{beam}}x}, x = k/E_{\text{beam}}$$

Electroproduction:

$$\sigma_{\pi}^{\text{electro}} = \int dx N_{\text{eff}}(E_{\text{beam}}, x) \frac{d\sigma_{\pi}(\gamma(xE_{\text{beam}})N \to \pi)}{dx}$$
$$N_{\text{eff}}(E_{\text{beam}}, x) = \frac{\alpha}{\pi} \ln\left(\frac{E_{\text{beam}}}{m_e}\right) \frac{1 + (1 - x)^2}{x}$$

 Add together to get pion rates - need radiation length of target traversed and internal radiation factor

ssues:

- Wiser just weights by just 1/k, not complete photon spectrum

 makes difference when k not small, we're interested in
 higher energy pions
- Target radiation length needs relative 4/3 not accounted for in any calculations
- Internal radiation goes to $2\alpha/\pi \ln(E/m_e)$, $k \to 0$, calculations used $\alpha/\pi \ln(E/m_e)$, $k \to 0$

Wiser Issues II

Overall effect:

- π rates low, especially for lower p
- PVDIS $RL_{int}/2 \sim \bar{RL}_{ext}$, shouldn't change too much for pions making it through the baffles

Should fix photon spectrum in code

other

(outdated) My calculation using "eicrate"

for 6GeV Transversity Condition

- Method
 - eicrate generate a distribution, find the event within HRS acceptance, then count the rate
 - Should be more accurate comparing to calculation at a fixed point

HRS rates comparison

Calculations

For hadron rate, wiser code is used. For electronr rate, whitlow code is used. Condition: 16 degrees, 2.35 GeV/c, Q2 is about 1 Target density: 10 atm @ 27 degrees. Pion decay: 2.6*2.35/0.14*3 = 131 m, exp(-23.5/131) = 0.8357 Kaon decay: 2.35*1.24/0.49*3 = 17.8 m, exp(-23.5/17.8) = 0.267 Acceptance: 6.7 msr for solid angle , +-5% momentum acceptance Target length: 33 cm

Data

For negative mode, we used run 4015. For position mode, we used run 4223. Cuts: Trigger 3, edtpl, trip, acceptance, ntrack == 1, vertex:33 cm, momentum +-5%, PID cuts (electron): A1>150 && Cer > 300 && E/p > 0.6 PID cuts (Pion): A1>150 && Cer < 300 && E/p < 0.6 PID cuts (Proton/Kaon): A1<150 && Cer < 300 && E/p < 0.6 Correction: livetime

Results: Unit: events/uC

	Pi+	Pi-	e-	K-	Proton
Calulation	105	62.4	11.6	0.88	71
Data	54.8	34	12.4	1.34	49.6

Assume

- HRS P range (2.2325,2.4675)
- HRS solid angle is a cone with half angle 2.65 deg
 - 6.7e-3=2*3.1416*(1-cos(2.65/180*3.1416))
- Result
 - 2857/10*0.8357= 238 uC for pip
 - 2753/10*0.8357= 230 uC for pim

Conclusion

electron rate, calculation is reasonable. pion rate, calcultion overestimates by a factor of 2. proton rate, calculation overestimates by 45% kaon, hard due to dirty PID