SIDIS trigger study

Yuxiang Zhao

Planned trigger detectors

- SIDIS electron trigger
 Forward angle: EC + LGC + SPD + MRPC
 Large angle: EC + SPD
- SIDIS hadron trigger

EC + SPD + MRPC (could be different depending on further study)

• Working plan

Get singles rate on each detectors for different particles

Get total singles rate with detector coincidence

- $\checkmark\,$ electron-like total rate
- $\checkmark\,$ hadron-like total rate

Estimate electron-like & hadron-like random coincidence rate

Estimate Real physics SIDIS rate with SIDIS generator

Forward electron trigger EC + LGC + SPD + MRPC

SPD threshold: 0.35 MeV

MRPC threshold: edep of 16eV in one gap and at least 5 gaps to be fired

SIDIS forward electron trigger ---Individual detectors **Using Wiser generator Singles particle** All 4 fired EC **MRPC** LGC SPD Rate (kHz) Rate(KHz) Rate(MHz) Rate(MHz) Rate(KHz) electron 3.3 1.9 82.8 169 64.4 Pim 861 82.4 15.5 14.46.2 17.6 7.2 Pip 1036 85.7 18.7 Pi0 2210 2045 10.8 7.6 88.1 49 41.5 Total: 4193 2382 166.5

Total electron-like trigger rate in forward angle: 166.5 KHz + random coincidence among detectors Random coincidence: if track match is done with 10 segmentations in each detector, random coincidence rate=55Hz

Large angle electron trigger EC + SPD

SPD threshold: 0.35 MeV

SIDIS large electron trigger

---Individual detectors

Using Wiser generator

Singles particle	EC Rate (kHz)	SPD Rate(MHz)	Both fired Rate(KHz)
electron	4.47	2.3	4.3
Pim	9.8	17.7	9.1
Рір	10	21.8	10
PiO	18.5	7.8	2.3
Total:	42.8	49.6	25.7

Total electron-like trigger rate in forward angle: 25.7KHz + random coincidence among detectors

Random coincidence: if track match is done with 10 segmentations in each detector, random coincidence rate=914Hz

SIDIS hadron trigger

Wiser curve and wiser data

Singles particle	EC Rate (MHz)	SPD Rate(MHz)	MRPC Rate(MHz)	All 3 fired Rate(MHz)
electron	0.21	3.5	1.9	0.17
Pim	13.7	15.7	14.4	12.1
Рір	16.7	19.1	17.6	14.8
PiO	17.5	10.8	7.6	2.5
Total:	48.1	49.1	41.5	29.6

Total hadron rate based on EC+SPD+MRPC = 29.6 MHz + random coincidence among detectors

Random coincidence: if track match is done with 10 segmentations in each detector, random coincidence rate=84KHz

Electron-like & hadron-like random coincidence ---assuming 30 ns window

- Forward angle electron trigger rate: 166.5KHz
- Large angle electron trigger rate: 25.7KHz
- Hadron trigger rate: 29.6MHz

let a concidence rate:
 (144KHz+29.8KHz)*29.58MHz*30ns=176KHz

No detector correlations study yet, should be taken into account

My concern for hadron trigger

- Forward electron trigger: EC(high threshold)+LGC+SPD+MRPC
- Forward hadron trigger: EC(low threshold) + SPD+MRPC
- Those particles passed electron trigger in the forward angle will also pass hadron trigger: will cause additional e&h coincidence rate by 144KHz in the forward angle
- VETO on LGC ??? Not practical, could have an electron in this sector
- Make judgement on hit position on EC??? Will have bias on phi_h
- Only inclusive triggers in forward angle??? A big project, not doable shortly

Hit position constraint to form hadron trigger ---5 cm away from electron trigger Using singles particle to do a test

Pid	Pass electron trigger (kHz)	Pass electron trigger and hadron trigger without R constrain (kHz)	Pass electron trigger and hadron trigger with R constrain (kHz)
electron	42	42	11.3
pim	6.2	6.2	0.8
рір	8.1	8.1	1.3
pi0	89.7	89.7	37.6

Electron trigger and hadron trigger at forward angle has a correlation of about 35% e&h trigger correlation in the forward angle will give additional 51kHz coincidence trigger rate

SIDIS trigger rate by using wiser

- e&h random coincidence:(144KHz+29.8KHz)*29.58MHz*30ns=154KHz
- e trigger and hadron trigger correlation in forward angle: 51KHz
- SIDIS physics rate: ~10KHz
- Detector correlations---impact on e or h rates---haven't been studied yet

To-do list for SIDIS trigger rate estimation

- Update EC response using Hall D generator (Rakitha)
- Update SPD threshold (Sanghwa)
- Update MRPC threshold (Sanghwa)
- Hadron-like trigger rate estimation \rightarrow done by using wiser based study
- Define how to do "track match" at trigger level to reduce random coincidence rate (among detectors)
 - \rightarrow 10 segmentations in phi dimension (3 adjacent sectors)
- Efficiency study by combining all the individual detectors in the trigger design

Backups

SIDIS hadron trigger

Wiser curve and wiser data

Singles particle	EC Rate (MHz)	SPD Rate(MHz)	MRPC Rate(MHz)	All 3 fired Rate(MHz)	All 3 fired + lgc veto (MHz)
electron	0.14	2.0	1.16	0.11	0.047
Pim	13.7	15.7	14.4	12.1	12.06
Pip	16.7	19.1	17.6	14.8	14.76
PiO	17.5	10.8	7.6	2.5	1.81
Total:	48	47.6	40.8	29.5	28.7

By putting a VETO on LGC for hadron trigger, we almost keep all the pi+/-

Forward electron trigger now doesn't have any overlap with hadron trigger

SIDIS forward electron trigger ---EC singles rate

Singles particle	Rate (kHz)
electron	53.9
Pim	864
Pip	1036
PiO	2210
Total:	

Using Wiser generator

SIDIS forward electron trigger ---LGC singles rate with threshold=2 p.e & 2 pmts

Singles particle	Rate (kHz)
electron	77.2
Pim	82.4
Pip	85.7
PiO	2045
Total:	

Using Wiser generator

SIDIS forward electron trigger ---SPD singles rate with threshold=0.35MeV

Singles particle	Rate (MHz)
electron	2.0
Pim	15.7
Pip	19.1
PiO	10.8
Total:	

Using Wiser generator 60 pieces in phi dimension, 4 pieces in r dimension

SIDIS forward electron trigger

---MRPC singles rate with threshold=16eV and 5 laylers to be fired

Singles particle	Rate (MHz)
electron	1.16
Pim	14.4
Рір	17.6
PiO	7.6
Total:	

Using Wiser generator 60 pieces in phi dimension, 4 pieces in r dimension, 10 gas layers