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The SolLID Experiments @ JLab
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@ Hall A, 11 GeV polarized beam, fixed targets (3H_‘e, NH3, Do, Hy).
@ GEM trackers (approx. 165k channels)

Experiment  Event size  Trigger rate Data rate Raw data
(kB) (kHz) (MB/s) (PB)
SIDIS 3 100 300 5.6
PVDIS 50 20 1,000 T 300 7.0
HLT
cf. GlueX 15 200 3,000 — 300 3.2/yr
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Choosing A Computing Model

3 minute run — 18M SIDIS events, 50 GB raw data
Assume 20 ms/event — to keep up with data taking, need 2000 cores

@ Single-threaded: no framework support for parallelism

» 2000 runs in parallel — 100 TB disk space for input
» = 100 hours turn-around time per run
» Problems: unrealistic cost & turnaround time

@ Multi-process: parallelism through the job scheduler
» E.g. 32 single-threaded jobs working on different event ranges of one run
> 62.5 runs in parallel — 3 TB disk space for input, 3 hours/run
> Potential problems: 1/O bottlenecks (disk head thrashing), limited scalability,
complexity outsourced to job scheduler
@ Multi-threaded: event-level parallelism through modern CPU architecture
> Similar to multi-process, but reduced random disk access & memory footprint
> Problems: scalability limited by cores/node, code complexity
@ Distributed: event-level parallelism through built-in scheduler
> 1 run in real time, 0.05 TB disk space for input.
> Virtually unlimited scalability
> Potential problems: even more code complexity, network bottlenecks
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My Take On the Computing Model Choice

@ A multi-threaded design offers

> best performance in terms of /O and memory use
» reasonable compromise in terms of complexity
» sufficient scalability for SoLID needs

@ A distributed system can be built on top of a multi-threaded
implementation
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Possible Multi-Threaded Architecture
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@ Thread Pool with three thread-safe queues
@ Queues hold working sets: event object, analysis chain & modules

@ Option to sync event stream at certain events (e.g. scaler events, run boundaries)

@ Option to preserve strict event ordering (at a performance penalty)
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Some General Considerations

@ Maximize consistency: Framework should support all of simulation,
digitization, reconstruction and physics analysis

@ Must support multi-pass processing: output — input for next pass
@ Support multiple analysis chains per job

@ DST file format not very important, but interactive analysis must be
possible with ROOT

@ DSTs should contain extensive metadata: database parameters from
previous stages (geometry etc.), data provenance, etc.
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Generic Data Model
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@ Data producers (algorithms) Sogtis

>
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Ideally, single algorithm per module
Run-time configurable

Must be reusable without recompilation — multiple instances allowed,
differing in configuration

@ Data objects (results)

>

>
>
>

transient or persistent

separate from producers

may reference other data objects
should hold metadata about their origin
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Analysis Chains
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@ Modules communicate only via data objects

@ Module relationships partly configurable at run time (select input from one
of multiple instances of a data object)

@ Support condition testing modules. Select subset of results and/or skip
further processing if certain tests fail or succeed.

@ May have multiple chains per job
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Simulation Support

@ MC truth info available in data objects
e Digitized data objects contain references to truth info (hits, tracks,
particles) that generated them

@ Support for embedding hits from MC tracks in real data for efficiency
calculations — job of event source module
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Conclusions

@ SolLID computing challenges are similar to those of CLAS12 and
GlueX: 5=7 PB of data per physics topic, requiring massively parallel
processing

@ Currently evaluating available HEP /NP frameworks

o ldeally, would like to avoid reinventing the wheel and adopt an
existing one

@ Joint effort with EIC development would be beneficial if sufficient
overlap
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