Software design ideas for SolLID

Ole Hansen

Jefferson Lab

EIC Software Meeting
Jefferson Lab
September 25, 2015

Ole Hansen (Jefferson Lab) Software design ideas for SoLID Sept 25, 2015 1/10

The SolLID Experiments @ JLab

EN]Calorimeter
et Uoard angle)

Beamlinel

;Eil'z_nd \Yoke]

im

[cherenko

@ Hall A, 11 GeV polarized beam, fixed targets (3H_‘e, NH3, Do, Hy).
@ GEM trackers (approx. 165k channels)

Experiment Event size Trigger rate Data rate Raw data
(kB) (kHz) (MB/s) (PB)
SIDIS 3 100 300 5.6
PVDIS 50 20 1,000 T 300 7.0
HLT
cf. GlueX 15 200 3,000 — 300 3.2/yr

Ole Hansen (Jefferson Lab) Software design ideas for SoLID Sept 25, 2015 2 /10

Choosing A Computing Model

3 minute run — 18M SIDIS events, 50 GB raw data
Assume 20 ms/event — to keep up with data taking, need 2000 cores

@ Single-threaded: no framework support for parallelism

» 2000 runs in parallel — 100 TB disk space for input
» = 100 hours turn-around time per run
» Problems: unrealistic cost & turnaround time

@ Multi-process: parallelism through the job scheduler
» E.g. 32 single-threaded jobs working on different event ranges of one run
> 62.5 runs in parallel — 3 TB disk space for input, 3 hours/run
> Potential problems: 1/O bottlenecks (disk head thrashing), limited scalability,
complexity outsourced to job scheduler
@ Multi-threaded: event-level parallelism through modern CPU architecture
> Similar to multi-process, but reduced random disk access & memory footprint
> Problems: scalability limited by cores/node, code complexity
@ Distributed: event-level parallelism through built-in scheduler
> 1 run in real time, 0.05 TB disk space for input.
> Virtually unlimited scalability
> Potential problems: even more code complexity, network bottlenecks

Ole Hansen (Jefferson Lab) Software design ideas for SoLID Sept 25, 2015 3 /10

My Take On the Computing Model Choice

@ A multi-threaded design offers

> best performance in terms of /O and memory use
» reasonable compromise in terms of complexity
» sufficient scalability for SoLID needs

@ A distributed system can be built on top of a multi-threaded
implementation

Ole Hansen (Jefferson Lab) Software design ideas for SoLID Sept 25, 2015 4/10

Possible Multi-Threaded Architecture

I Thread Pool
I Analysis Thread 1

Analysis Thread 2

Results Output

Queue Thread
Analysis Thread 3 -

Analysis Thread N
Output

File

@ Thread Pool with three thread-safe queues
@ Queues hold working sets: event object, analysis chain & modules

@ Option to sync event stream at certain events (e.g. scaler events, run boundaries)

@ Option to preserve strict event ordering (at a performance penalty)

Ole Hansen (Jefferson Lab) Software design ideas for SoLID Sept 25, 2015

5/ 10

Some General Considerations

@ Maximize consistency: Framework should support all of simulation,
digitization, reconstruction and physics analysis

@ Must support multi-pass processing: output — input for next pass
@ Support multiple analysis chains per job

@ DST file format not very important, but interactive analysis must be
possible with ROOT

@ DSTs should contain extensive metadata: database parameters from
previous stages (geometry etc.), data provenance, etc.

Ole Hansen (Jefferson Lab) Software design ideas for SoLID Sept 25, 2015 6 /10

Generic Data Model

Output
DEICN]

Data Producer
Py
Output
Data 2

@ Data producers (algorithms) Sogtis

>
>
>

Ideally, single algorithm per module
Run-time configurable

Must be reusable without recompilation — multiple instances allowed,
differing in configuration

@ Data objects (results)

>

>
>
>

transient or persistent

separate from producers

may reference other data objects
should hold metadata about their origin

Ole Hansen (Jefferson Lab) Software design ideas for SoLID

Analysis Chains

- g
Tracker i:ﬂgt::'t Tracker ftted
Hits Find Clusters Tr"ac”ks
inder e = - ‘N

Track Track
Cand- Cand-

idates idates

P P Fitted
Tracks

Calo upn
Clusters

Calo
Cluster
Finder

@ Modules communicate only via data objects

@ Module relationships partly configurable at run time (select input from one
of multiple instances of a data object)

@ Support condition testing modules. Select subset of results and/or skip
further processing if certain tests fail or succeed.

@ May have multiple chains per job

Ole Hansen (Jefferson Lab) Software design ideas for SoLID

Simulation Support

@ MC truth info available in data objects
e Digitized data objects contain references to truth info (hits, tracks,
particles) that generated them

@ Support for embedding hits from MC tracks in real data for efficiency
calculations — job of event source module

Ole Hansen (Jefferson Lab) Software design ideas for SoLID Sept 25, 2015 9 /10

Conclusions

@ SolLID computing challenges are similar to those of CLAS12 and
GlueX: 5=7 PB of data per physics topic, requiring massively parallel
processing

@ Currently evaluating available HEP /NP frameworks

o ldeally, would like to avoid reinventing the wheel and adopt an
existing one

@ Joint effort with EIC development would be beneficial if sufficient
overlap

Ole Hansen (Jefferson Lab) Software design ideas for SoLID Sept 25, 2015 10 / 10

