streaming

Streaming MC directly to reconstruction... yes it's easier but....

- a. no performance gain (disk I/O negligible).
- b. Reco has to be blind to MC.
- c. I/O tests (TT, banks, timing)
- d. Need ability to keep hits to compare MC response to data.

reconstructing...

Try. Every. Framework.

"Try": write hits (TEXT file ok), use framework to reconstruct hits.

Do not decide on a framework before trying.

Software Teams (CLASI2)

Detector	Sensitivity	
BST	M. Ungaro, A. Yegneswaran, Y. Gotra, V. Zieger, J. Roger, G. Gilfoyle	
Micromegas	S. Procureu, G. Charles, F. Sabatie, G. Fredric.	
СТОГ	M. Ungaro, V. Baturin, D. Carman, K. Adhikari,	
CND	S. Niccolai, D. Sokhan, A. Biselli	
HTCC	Y. Sharabian, N. Harrison, A. Puckett, N. Markov	
DC	M. Mestayer, Y. Prok, J. Goetz	
LTCC	M. Ungaro, A. Vlassov	
FTOF	D. Carman, G. Gilfoyle, A. Kim	
PCAL	M. Wood, A. Piaseczny, J. Sikorsky, C. Smith	
EC	C. Smith, G. Gilfoyle, G. Gavalian, L. Allison	
RICH	M. Contalbrigo, L. Pappalardo, N. Baltzzell, A. Ahmed, S. Pisano, F. Benmokthar	
FT	R. Devita, M. Battaglieri, A. Celentano	

Background Rates, Scalers - example 1 (SVT)

SVT:

Geometry: each module has sevel layers of materials. Includes bus cables, support structure, even glue. 17K channels.

Sensitivity: 3/4 regions, 2 layers/region, 3 modules/layer, 256 variable angle strips. Charge sharing. electronic noise, lorentz angle. 132 ns Time window

Digitization: 3 bit ADC, region/layer/strip. Detailed comparison with cosmic data. MC, RECO, calibration

Background Rates, Scalers - example I (SVT)

Energy Deposited (Threshold Study)

Rates / particles / energy deposited / target

Edep > 0.04

mrad/(scm2)

0.00462

0.00462

0.00733

0.01187

0.01501

rad/year

196939

197013

312193

505612

639498

rad/(year cm2)

145 145

231

374

473

Rates in Layer: 1a

	EM	Hadronic	Total
1a	57.68	2.588	60.27
1b	43.29	2.124	45.41
2 a	50.82	3.685	54.51
2b	41.91	3.162	45.07
3a	44.59	4.813	49.4
3b	38.04	4.354	42.4
4a	32.74	3.383	36.12
4b	28.83	3.862	32.69

Edep > 20 KeV, Rate in MHz

(what's shown here would correspond to random trigger in clas12)

mrad/s

6.244

6.247

9.899

16.032

20.278

GeV/s

20325

20332

32220

52182

66000

target

1h2

1d2

С

Fe Pb GeV/(s cm2)

15.054 15.060

23.865

38.650

48.885

Background Rates, Scalers - example IV (HTCC)

HTCC:

Sensitivity: 12 sectors, 4 layers. Wavelengthdependent PMT q.e., gas and mirror refraction indexes

Digitization: 13 bit FADC, region/layer/strip,Voltage vs time signal, trigger simulation, cluster reconstruction

CLASI2 simulations

Detector	Sensitivity	Digitization	
BST	3/4 regions, 2 layers/region, 3 modules/layer, 256 variable angle strips. Charge sharing. electronic noise.	3 bit ADC, region/layer/strip	
Micromegas	3/4 regions, 2 layers/region, 3 tiles/layer, 1000 strips/tile. Charge sharing. Lorentz angle.	12 bit ADC, region/layer/tile/strip	
CTOF	58 scintillators, PMT q.e., attenuation length, effective velocity	region/paddle ADC TDC	
CND	3/4 layers, 48 scintillators each, PMT q.e., attenuation length, effective velocity, birks effect, paddle resolution	region/layer/paddle ADC TDC	
HTCC	12 sectors, 4 layers. Wavelength-dependent PMT q.e., gas and mirror refraction indexes	sector/layer, PMT, nphe	
DC	3 region, 2 superlayers/region, 6 layers/SL. DOCA, drift velocity, cell resolution	sector/region/SL/layer/wire, TDC	
LTCC	6 sectors, 2 regions, 18 PMT / region. Wavelength-dependent PMT q.e., gas and mirror refraction indexes	sector/region, PMT, nphe	
FTOF	6 sectors, 3 panels, 5/23/62 paddles/panel, left right PMT	sector, panel, ADC TDC	
PCAL	15 layers, u,v,w views, 24 scintillator/view, attenuation length, effective velocity, PMT gain, nphe/charge	sector/stack/view/PMT ADC TDC	
EC	39 layers, u,v,w views, 36 scintillator/view, attenuation length, effective velocity, PMT gain, nphe/charge	sector/stack/view/PMT ADC TDC	
RICH	Wavelength-dependent PMT q.e., gas and mirror refraction indexes, multi- channel PMT	PMT, ADC, TDC	
FT	Light Yield for PbW04, APD q.e, gain, noise	PMT, ADC, TDC	

20 years CLAS experience:

Detectors are very complex. Lead team of several people for each detector system should be the software responsible:

- geometry, tests, misalignments
- calibration
- databases constants
- data structure
- digitization
- reconstruction

The software frameworks should allow for these teams to independently build and test their own MC geometry, calibration interface, database constants, etc.

This was a "prime directive" when writing GEMC software framework, and should be prime directive for any complex detector