
Geometry Database — Design Ideas

1 Describe geometry by sets of human-friendly core parameters. Simulation,
digitization, reconstruction and analysis each build their internal geometry
structures from these core parameters
(e.g. “sensitive” vs. “logical” volumes)

2 Ensure consistency between different stages (sim, digi etc.) Most easily
achieved by storing actually used parameters in output files

3 Central vs. local database. Local should be user-friendly (no servers). For
digi/reco/analysis, input file would be one of the database sources.

4 Allow easy override of parameters (but maintain consistency)
5 Support version control of parameter sets
6 Provide user-friendly visualization and editing of parameters
7 Should be compatible with other JLab efforts. Must work with GEMC

Ole Hansen (Jefferson Lab) SoLID Geometry Database August 20, 2015 1 / 3



Considerations (I)

Item 1: Develop generic API for accessing core parameters. Should support
various backends (input file, MySQL, sqlite, CCDB, XML, flat text files,
git, etc.) SoLID will implement only its own preferred set of backends.

Item 1: Develop parameterizations for all geometries. Some already done in
GEMC’s scripts, go from there.

Item 1: Parameters will evolve, hence need robust schema evolution. ROOT,
text, XML (?), CCDB (?) support this.

Item 2: Ideally independent of file format → binary formats (e.g. ROOT)
not very suitable, prefer text

Ole Hansen (Jefferson Lab) SoLID Geometry Database August 20, 2015 2 / 3



Considerations (II)

Item 4: Maintaining consistency could be tricky. Need to stop users from
overriding parameters of previous stages.

Item 5: CCDB offers some version control. Text/XML files under git would
be even better.

Item 6: Writing a GUI editor is a lot of work

Item 7: Integration into GEMC is an issue. Would need to modify geometry
processing (?) and output. But GEMC development is becoming more
flexible. Strongly prefer not to fork GEMC.

Ole Hansen (Jefferson Lab) SoLID Geometry Database August 20, 2015 3 / 3


