
Frameworks @ EIC Software Workshop

FairRoot (GSI, 2004), based on AliRoot (ALICE @ CERN-LHC, 1998)
art (FNAL, 2009), based on CMS software (CMS @ CERN-LHC)
JANA (Hall D, 2004), in-house
Fun4All (PHENIX/sPHENIX @ BNL, 1998), in-house
CLARA (Hall B), loosely based on GAUDI (LHCb @ CERN-LHC)
(talk was canceled)

Ole Hansen (Jefferson Lab) Impressions from EIC SW Meeting October 1, 2015 1 / 7



Framework Aspects

Computing model (node, batch, cluster, grid)
Degree of ROOT integration
Support for concurrency/multithreading
Extent of predefined workflows
Support level
Pre-existing work

Ole Hansen (Jefferson Lab) Impressions from EIC SW Meeting October 1, 2015 2 / 7



Things I Learned (I)

Outside of JLab, most NP and HEP experiments use ROOT for object
serialization and file I/O. Oddly, at JLab, there are efforts to do this without
ROOT.
ROOT is indispensable for final interactive analysis
Interactive steering is not always the best choice

I Configuration files can be more readable than scripts
I Mostly useful for testing and debugging

New developments integrate the simulation into the framework
Everyone does multi-stage analysis with intermediary DST files
Run-time configuration (no recompilation) is standard
EIC group has made good progress with setting up and end-to-end analysis
chain under FairRoot

Ole Hansen (Jefferson Lab) Impressions from EIC SW Meeting October 1, 2015 3 / 7



Things I Learned (II)

The case for concurrency may be less compelling than I thought
I Memory usage and I/O performance arguments are no longer as strong as

they used to be
I Job schdulers achieve similar results without the programming hassles for the

physicists
I Serious data challenges must be addressed with distributed computing

(cluster or grid) anyway

Ole Hansen (Jefferson Lab) Impressions from EIC SW Meeting October 1, 2015 4 / 7



SoLID Data Parameters

Experiment Event size Trigger rate Data rate Raw data
(kB) (kHz) (MB/s) (PB)

SIDIS 3 100 300 5.6
PVDIS 50 20 1,000 HLT→ 300 7.0

cf. GlueX 15 200 3,000 HLT→ 300 3.2/yr

Ole Hansen (Jefferson Lab) Impressions from EIC SW Meeting October 1, 2015 5 / 7



Choosing A Computing Model
3 minute run → 18M SIDIS events, 50 GB raw data
Assume 20 ms/event → to keep up with 100 kHz event rate, need 2000 cores

Single-threaded: no framework support for parallelism
I 2000 runs in parallel → 100 TB disk space for input
I ≈ 100 hours turn-around time per run
I Problems: inefficient in cost & turnaround time

Multi-process: parallelism through external job scheduler
I E.g. 32 single-threaded jobs working on different event ranges of one run
I 62.5 runs in parallel → 3 TB disk space for input, 3 hours/run
I Potential problems: I/O bottlenecks (disk head thrashing), limited scalability,

complexity outsourced to job scheduler
Multi-threaded: event-level parallelism built into software architecture

I Similar to multi-process, but reduced random disk access & memory footprint
I Problems: scalability limited by cores/node, code complexity

Distributed (cluster, grid): event-level parallelism through built-in
scheduler

I 1 run in real time, 0.05 TB disk space for input.
I Virtually unlimited scalability
I Potential problems: even more complexity, network & tape I/O bottlenecks

Ole Hansen (Jefferson Lab) Impressions from EIC SW Meeting October 1, 2015 6 / 7



My Take On the Computing Model Choice

A multi-threaded design offers
I best performance in terms of I/O and memory use
I reasonable compromise in terms of complexity
I sufficient scalability for SoLID needs

A distributed system can be built on top of a multi-threaded
implementation

Ole Hansen (Jefferson Lab) Impressions from EIC SW Meeting October 1, 2015 7 / 7


