
SoLID Software Framework Selection

Ole Hansen

Jefferson Lab

February 4, 2016

Ole Hansen (Jefferson Lab) SoLID Software Framework Selection February 4, 2016 1 / 11

Our High-Level Requirements

Consistency: Framework should support all of simulation, digitization,
reconstruction and physics analysis
Multi-pass processing: output → input for next pass
Run-time configurable:

I No recompilation for different analysis workflows/parameters
I Multiple instances of modules (with different configurations)

Multiple analysis chains per job, e.g.
I Different tracking or PID schemes
I Several physics analyses in parallel

Digitization able to write raw data format
Extensive metadata in DSTs, e.g.

I Database parameters from previous stages (geometry etc.)
I Data provenance

Interactive analysis with ROOT

Ole Hansen (Jefferson Lab) SoLID Software Framework Selection February 4, 2016 2 / 11

Apparent State Of the Art Architecture

Converter

Algorithm

Event Data
Service

Persistency
Service

AlgorithmAlgorithm

Transient
Event Store

Detec. Data
Service

Persistency
Service

Transient
Detector
Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service

Data
Files

Transient
Histogram
Store

Application
Manager

Converter
ConverterEvent

Selector

Data
Files

Data
Files

Figure 2: Object Diagram of the GAUDI Architecture

4.2 Transient data stores

The data objects needed by the algorithms are organized in several transient data stores, depending
on the nature of the data itself and its lifetime. The Transient Event Store contains event data that
are valid only for the time it takes to process one event. The Transient Detector Store contains
data that describe various aspects of the behavior of the detector (e.g. alignment) and generally
have a lifetime that corresponds to the processing of many events. The Transient Histogram Store
contains statistical data, which typically have a lifetime corresponding to the data processed in
a complete job. Although the stores behave slightly differently, particularly with respect to the
data lifetime (e.g. the event data store is cleared for each event), their implementations have many
things in common and are based on a common component.

A transient store helps to minimize coupling between algorithm objects and data objects.
This approach was inspired by the work done in the BaBar experiment [3]. An algorithm can
deposit some piece of data into the transient store, and these data can be picked up later by other
algorithms for further processing without knowing how they were created. This conforms to the
”blackboard” architectural style, in which the transient store fulfils the role of the blackboard.

The transient data store also serves as an intermediate buffer for any type of data conver-
sion to another representation of the data, in particular the conversion into persistent objects or
graphical objects. Thus data can have one transient representation and zero or more persistent or
graphical representations.

The organisation of the data within the transient data stores is ”tree-like”, similar to a Unix
file system. This allows data items that are logically related, such as Monte Carlo ”truth” infor-
mation, to be structured and grouped at run-time. Each node in the tree may either contain data
members, or other nodes containing further groups of data members (Figure 4). As in a directory
structure, each node is theownerof everything below it and will delete all these items when it gets
deleted. In general, object-oriented data models do not map onto a tree structure. Thus, mesh-like
object associations have been implemented using symbolic links (again inspired from the Unix file
system) in which the node does not acquire ownership of the referenced item.

From G. Barrand et al., “GAUDI - A software architecture and framework for building LHCb data processing applications”,
CHEP2000

Ole Hansen (Jefferson Lab) SoLID Software Framework Selection February 4, 2016 3 / 11

Data Flow Cartoon

Oliver Gutsche I DPF2015 - Exascale and Exabytes: Future directions in HEP Software and Computing 6. August 2015

Software & Computing

▪ Software is important for every step on the way to scientific results
5

Device

Simulation

RAW
Data

Algorithms to
reconstruct

data

RECO
Data

Analysis
software

PL
O

TS
N

Tu
pl

es

From O. Gutsche (FNAL), “Future Directions in HEP Software and Computing”, DPF2015

Ole Hansen (Jefferson Lab) SoLID Software Framework Selection February 4, 2016 4 / 11

Algorithms & Data Objects

Data Producer

Input
Data 3

Input
Data 1

Input
Data 2

Output
Data 1

Output
Data 2

Config

Data producers (algorithms)
I Run-time configurable → reusable w/o recompilation, multiple instances
I Single algorithm per module → testable independent of framework (unit

tests)
Data objects (inputs & results)

I separate from producers → decouples algorithms
I may reference other data objects
I hold metadata

Ole Hansen (Jefferson Lab) SoLID Software Framework Selection February 4, 2016 5 / 11

Analysis Chains

Track
Cand-
idates

Track
Tests

Track
Finder

Tracker
Clusters

Calo
Clusters

GEM Hit
Cluster
Finder

Tracker
Hits

Calo
Cluster
Finder

Calo
Hits

Track
Fitter

Conf=A

Fitted
Tracks

“A”

Track
Fitter

Conf=B

Fitted
Tracks

“B”

Track
Cand-
idates

Modules communicate exclusively via data objects
Module relationships configurable at run time by selecting from available
compatible input data objects (by name, class, instance or similar)
Condition testing modules select subset of results and/or skip further
processing if certain tests fail or succeed.
Multiple chains per job
One or more output modules (not shown) write user-configured subset of
available data objects and/or ntuples/histograms

Ole Hansen (Jefferson Lab) SoLID Software Framework Selection February 4, 2016 6 / 11

LHC Frameworks

CMS: CMSSW
LHCb: Gaudi
ATLAS: Athena (based on Gaudi)
ALICE: AliRoot

Extremely complex software, total overkill for SoLID

Ole Hansen (Jefferson Lab) SoLID Software Framework Selection February 4, 2016 7 / 11

Lighter-Weight Frameworks Comparison
Feature art (FNAL) FairRoot (GSI) Fun4All (PHENIX) JANA (JLab)

Origin CMSSW (CMS) AliRoot (ALICE) In-house In-house

First release 2009 2005 2003 2005

Collaborations using framework ~9 ~10 1 1

Language C++11/14 ROOT C++ (pre STL) ROOT C++ (pre STL) C++98

Base framework self-contained ROOT ROOT self-contained

Output, object persistency custom ROOT plain ROOT custom ROOT HDDM (XML)

Steering, configuration FHiCL ROOT macro ROOT macro command line
& compiled in

Reusable/multi-instance modules yes (user) (user?) very limited

Multiple analysis chains yes yes yes very limited

Data product identification type + 3 keys type + producer name type + tag

Complexity of data object search O(logN) O(1) O(N) O(M>N)

Data provenance tracking yes no no no

Test/filter modules to skip event yes output module output module output module

Thread-safe code yes no no yes (partial)

Main dependencies cet-is (3.5 GB) FairSoft (2.8 GB) ROOT, boost (1 GB) Xerces XML

Preferred installation Binary via UPD Source (GitHub) Source (GitHub) Source (GitHub)

Unit tests 425 39 (high-level) 0 0

User documentation User Guide (500p),
workshops

 Examples, Wiki Examples, Wiki Examples, Wiki,
User Guide (old)

User code reusable for SoLID some (DB, I/O) much (Panda, EIC) some (PHENIX) much (GlueX)

Ole Hansen (Jefferson Lab) SoLID Software Framework Selection February 4, 2016 8 / 11

Lighter-Weight Frameworks Services Features

Feature art (FNAL) FairRoot (GSI) Fun4All (PHENIX) JANA (JLab)

Transient event store Event, run, subrun
objects

ROOT folders Phool Node Tree With producers

Persistency Service custom ROOT I/O plain ROOT I/O custom ROOT I/O (not part of JANA)

Folders in event store no yes yes no

Event Data Service template function TClonesArray template function template function

Message service yes yes no yes

JobOptions Service FHiCL API FairRuntimeDb no ParameterManager

Geant4 integration artG4 VMC yes (?) no

Detector Data Service (geo) no (service API) no (geo classes) no JGeometryXML

Detector Data Service (cond) no (service API) no no JCalibrationCCDB

Histogram Service TFileService no HistoManager no

 Interactive mode no yes yes no

Configuration test yes no no no

Memory tracker yes ROOT memcheck no no

Polymorphic data objects yes yes no (?) yes

Inter-object references art::Ptr, art::Assns
(1-1, 1-N, N-N)

TRef, FairLink (?)

integer indices (?)

integer indices

Ole Hansen (Jefferson Lab) SoLID Software Framework Selection February 4, 2016 9 / 11

Example FairRoot/EICRoot Script

From Alexander Kiselev’s Sept 2015 EICRoot examples:

Ole Hansen (Jefferson Lab) SoLID Software Framework Selection February 4, 2016 10 / 11

Equivalent art FHiCL configuration file

Ole Hansen (Jefferson Lab) SoLID Software Framework Selection February 4, 2016 11 / 11

