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1 Changelog

1.1 Draft 0.5

• Added short description on the montecarlo part

• Uniform spatial distribution of avanlanche added

1.2 Draft 0.4

• Normalization factors in pulse shape corrected and description simplified

1.3 Draft 0.3

• Added recostruction section

• Add Furry distribution description

• Improved timing and pulse shape considerations

1



• Implemented Ole comments

1.4 Draft 0.2

1. strip/pixel readout plane description simplified

2. total collected charge implemented by histogramming bin sums instead of function
integral

3. description of the simulation extended: included two candidates flow of processing
(fig 1)

4. description of the data structures extended

2 Front Tracker simulation framework

The flow diagram of the Front Tracker simulation is shown in figure 1 and data
structures in appendix B:

• GEANT4 is used to generate the “real hits” (both for signal and back-
ground); each real hit is identified by the parameters shown in appendix,
table 1.

• Real hits are grouped in events (implemented in a TTree structure) which
can be chained from different files.

• The Real hits can be grouped into tracks, by the “track enumerator” module.

• The digitization module (described below) scans the hits and provides “vir-
tual strips” (one or more for each physics hit), see table 3 in appendix;
virtual hits (implemented in TTree structure) can be chained.

• A mixer code combines (sums) signal and background virtual strips charge
to generated the electronics pulses of the real strips (see table 4).

• The real strips are used to reconstruct the clusters (reconstructed hits) and
then the reconstructed tracks, by the reconstruction module described below.

3 Montecarlo

The Montecarlo is based on GEANT4 framework and the code has been designed
taking into account modularity and simplicity (for the end user).
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Figure 1: The flow diagram of the Front Tracker simulation framework, with the
digitizatation module exploded.
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It includes quite detailed models of the target, dipole magnet with field clamps,
GEM trackers1 small silicon detector and preliminary model of the HERMES
RICH (plan to be used in the SIDIS experiment). Models are individual objects
that inherith from a single class; they can be configured at run-time using the
GEANT4 macro mechanism. Configuration parameters can be stored into a ded-
icated flexible database that can be stored together with the Montecarlo results
into a ROOT-Tree output file.

Figure 2 shows part of a possible SBS setup for the SIDIS experiment.
The physics processes can currently be selected from the long list of GEANT4

predefined models. For background estimation the GEANT4 QGSP BERT physics
list has been chosen (it is generally suggested for most of the GEANT4 applica-
tions) with equivalent energy cut of 1 keV (configurable).

Figures 3 and 4 present some generated events for background estimation with
magnetic field off and on respectively.

The Montecarlo main outputs are the hits information, that is energy loss in
the sensitive materials (e.g. GEM gap) of the travelling particle, its position,
momentum and time of crossing (or absorption). Each sensitive detector has a
pseudo unique identifier, that tags each hit.

As mentioned, all these information are stored in ROOT-Tree files, together
with the configuration parameters, which are then processed by the Digitizer dis-
cussed in details in the following section; no digitization is performed in the Mon-
tecarlo itself. In this way, the extra code is compensated by an higher flexibility;
the same Montecarlo data can be used several times to test different configuration
of the GEM readout as well as different background conditions.

4 Digitization

The digitization module implements the basic physics processes that generate the
electronics signals in the readout strips and the corresponding pulses coming out
from the readout electroncs; the starting information are the deposited energies of
the primary particle in the GEM chambers of the front traker, simulated by the
GEANT4 dedicated code.

4.1 Ionization

Ion pairs are generated randomly (uniform distribution) along the primary track
in points (xi, yi, zi). The pairs generated in the drift gap (between the drift plane

1The GEM chamber model includes all layers of a triple GEM as well as electronics and
mechanical supports.
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Figure 2: Part of the SBS configuration in the SIDIS experiment: from right to
left: scattering chamber (with target inside), small Silicon Strip Detector, Dipole
magnet with field clamps, GEM tracker with 6 Chambers, and part of the HER-
MES RICH detector.
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Figure 3: Events of the GEANT4 background simulation, no magnetic field.
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Figure 4: Events of the GEANT4 background simulation, 1.7 T magnetic field,
which clean up a lot of low energy charge tracks.
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and the first GEM) are multipled enough to provide an observable signal in the
readout plane2.

The average number of ion pairs nion generated by the primary particle is given
by:

nion = ∆E/Wi

where ∆E is the energy loss by the primary particle, Wi is the effective average
energy needed to produce one ion pair in the gas (for Ar WAr

i = 26 eV)3

The number of ion pairs originating the hit nion follows the Poisson distribution
with mean parameter nion

4.2 Diffusion and Drift

Drift and diffusion times (speeds) are different for positive ions and electrons.
Drifting toward the GEM holes and to the readout plane depends on the

electrostatic field. Typical value of the average drift velocity is vd = 5÷ 6 cm/µs,
and therefore the time to reach the readout plane is: tro ∼ L/vd where L is the
distance from the center of the drift region to the readout plane (that is the average
distance traveled by the secondary electrons generated in the drift region)4.

The secondaries will diffuse perpendicular to the electrostatic field and will
drift along the electrostatic field direction. The diffusion is basically described
by the diffusion coefficient D (depending on the gas) which relates the standard
deviation σs of the spatial charge distribution at time t originated from a point at
time 0:

σs(t) =
√

2Dt

Diffusion coefficient in argon for electrons is 200÷ 300 cm2/s
We can likely assume that the spatial distribution of the charge in the readout

plane is a sort of gaussian with a standard deviation of:

σs = σs(tro = L/vd) =
√

2DL/vd (1)

Therefore the original ionization points (xi, yi, zi) due to the drifting of the
electrons end up in the projection (xhi , y

h
i ) on the readout plane.

2Pairs generated in the other gaps have less chance to be detected due the smaller multipli-
cation.

3Replacing ∆E with dE/dx, the specific energy loss, one get the number of ion pairs per unit
path.

4More realistically, perhaps, L is the distance between the ionization point along the track in
the drift region and the corresponding projection in the readout plane and therefore depend on
the generated initial pair
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4.3 GEM multiplication

Each GEM multiply the secondary electrons (and ions) by an average factor g
(related to the first Townsend coefficient α by g = n/n0e

αx, being x the path
where the inelastic processes responsible of the multiplication occur).

Assuming that the electron attachment and molecular dissociation are neg-
ligible, in a uniform electric field, the distribution of the number of secondaries
follows quite well the Polya distribution[3]:

fPolya(n) =
b

n

1

(b− 1)!

(
b(n− 1)

n

)b−1
exp

(
−b(n− 1)

n

)
where n is the mean avalanche size (that is g), b = (1 + θ). θ depends on the
electrostatic field and the gas properties by θ = kWiα/E, being k a constant and
E the electrostatic (constant) field. Basically θ accounts for the variation of α with
n: α(n) = α(1 + θ/n). The Polya distribution becomes a Poisson distribution for
b→∞, while is a Furry distribution for θ → 0 (that is b→ 1):

fFurry(n) =
1

n
exp

(
−n
n

)
.

The latter limit is probably more suitable for a first approximation in GEM (due
to the large electrostatic field E in the GEM holes).

Let us consider both cases:

4.3.1 Poisson amplification

Assuming that the multiplication is a Poisson process on each GEM foil, in case
of nGEM GEM foils, the total average gain G is the product of the gain of the
single foil gi, that is:

G =
nGEM∏

1

gi

The distribution of the gain G is not a Poisson distribution (the fluctuation on

the multiplication σG is much larger than
√
G and is of the order of the statistical

propagation of the fluctuation); however it is similar to a Gaussian distribution
(central limit theorem).

In fact

σG ∼ G/
√
g0 (2)

where g0 is the mean gain of the first GEM foil (see figure 6).

9



Geometric Projection

Charge distribution

Drift

GEM Gap

GEM Gap

GEM Gap

Readout

DiffusingDrifting
(x,y,z)

(xr,yr,zr)

Figure 5: Very schematic view of the ionization, diffusion, drift and multiplication
processes in the GEM chamber.

In this case, we can approximate the gain Gi (number of collected electrons
from the single ion pair i) to a gaussian distribution with mean G and sigma σG,
that is:

Gi(xG) = exp

{
−
(
xG −G

)2
/(2σ2G)

}
(3)

4.3.2 Furry Amplification

In this case we assume that the distribution of the electron avalanche after a single
GEM foil is the Furry distribution (see above).

The RMS, after several GEM foils, is similar to the mean value, with the gain
parameter replaced by the actual gain (see fig. 7), that is σG ∼ G.

In this case the gain Gi is distributed almost like a Furry:

Gi(xG) ∼ exp(−xG
G

) (4)

10



hsec000
Entries  500000
Mean   0.9978
RMS     0.221

secondaries [x 20.0]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

hsec000
Entries  500000
Mean   0.9978
RMS     0.221

=  4.5)σSecondaries (gain=20.0, ngem=  1, scale= 20.0, hsec001
Entries  500000
Mean   0.9996
RMS    0.2294

secondaries [x400.0]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

hsec001
Entries  500000
Mean   0.9996
RMS    0.2294

=126.5)σSecondaries (gain=20.0, ngem=  2, scale=400.0, 

hsec002
Entries  500000
Mean   0.9995
RMS      0.23

secondaries [x8000.0]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

hsec002
Entries  500000
Mean   0.9995
RMS      0.23

=3098.4)σSecondaries (gain=20.0, ngem=  3, scale=8000.0, 

2
10

3
10

10

210

3
10

RMS vs Mean

Figure 6: Distributions of the number of electrons after 1 (top-left), 2 (top-right)
and 3 (bottom-left) GEM foils, coming from a single secondary pair generated
in the drift; equal gain of 20 per GEM foil and Poisson distribution is assumed;
in red the gaussian fit. In the bottom-right the RMS of the distribution ver-
sus the mean value. Note that the predicted RMS of a pure Poisson would
be RMSPoisson =

√
8000 = 89.4 while the RMS predicted by the simulation is

RMSstat ∼ 8000/
√

20 = 1788. This seems to depend only on the first gain.
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Figure 7: Distributions of the number of electrons after 1 (top-left), 2 (top-right)
and 3 (bottom-left) GEM foils, coming from a single secondary pair generated in
the drift; equal gain of 20 per GEM foil and Furry distribution is assumed; in red
the exponential fit (y3×GEM = (8.8361± 0.0019) · exp(−(1.0163 ± 0.0013)x/g3)).
In the bottom-right the RMS of the distribution versus the mean value. Note that
the predicted RMS of a pure Poisson would be RMSPoisson =

√
8000 = 89.4 while

the RMS predicted by the simulation is RMSstat ∼ 7700 very similar to the mean
gain (8000).
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4.4 Charge Collection

In the first approach, the spatial distribution of the hit charge collected was as-
sumed to be the sum of the gaussian distributions centered at each projection
(xri , y

r
i , z

r
i )

5 of the original pair production points (xi, yi, zi) in the drift gap:

Ghit(x, y) =
nion∑
i=1

Gi exp
{
−
(
(x− xri )

2 + (y − yri )
2
)}

/(2σ2s(i)) (5)

where Gi is given by eq. 3 or 4 and σs by eq. 1
This approach did not reproduce the proper charge sharing between the two

layer of the COMPASS like 2dimensional readout plane.
We therefore replaced the gaussian distribution by a constant uniform distribu-

tion which demonstrated to reproduce quite well the measured charge distribution
from literature [4].

Therefore equation 5 has been replaced by6:

Ghit(x, y) =
nion∑
i=1

Gi ·H
(
(f · σ2s(i))− ((x− xri )

2 + (y − yri )
2)
)

(6)

where H() is the properly normalize Heaviside step function (zero for negative
values, 1 for positive) and f = 3.

Implementation details of the response of the strips of the COMPASS like 2D
readout plane are presented in A.

4.5 Pulse formation and Timing

The shape of the analog pulse coming out from the electronics coupled to a silicon
detector is approximated by ([1]):

vout = A
t

T 2
P

e−t/Tp

where Tp is the shaping time (∼ 50 ns, which provide a total width of the signal
of about 250 ns), see fig. 9. More realistically, the shape from the electronics
coupled to a GEM is represented by[2]:

vout = A
τ0 + τ1
τ21

(
1.− e−(t−t0)/τ0

)
e−(t−t0)/τ1

5zri is constant and equal to the position of the readout plane
6The most realistic function is something closer to the uniform distribution with smoth bor-

ders.
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Figure 8: Readout 2D strip plane modeled by a 2D regular array of equidistant
rectangular bins (assuming perfect balance of the signal between x and y); bin size
is the strip pitch along one axis (a) and the semi pitch along the other (b). The
segment A − B represents the projection of the drift track on the readout plane.
The (xL, yL) and (xU , yU ) are the lower and upper limits of the area involved in
the charge collection (definition is given in the text).
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where t0 is the time shift, τ0 and τ1 the time constant that contribute to the width
of the pulse; figure 10 compares the two above expressions which appear to differ
mainly in the length of the tail.

The normalization A is the total charge on the strip (the Ii or Ij of eq. 7 and
8 respectively)7.

In our GEM implementation, the above time dependent pulses are sampled by
the APV25 with a period of tsample = 25 ns. nsample = 3 adjacent samples are
transferred from the APV25 to the DAQ system and therefore available as raw
data of the single strip. In case of signal (particle in coincidence with the trigger)
the 3 samples are synchronized and therefore represent always the same part of
the function (with a fluctuation related to the trigger jitter).

In case of a background generated hits, the 3 adjacent samples are randomly
(uniformly) distributed and therefore, the sampling is random relative to the start-
ing time of the signal. The simulation takes into account an effective time window
∆t of about −tsignal to nsample · tsample, where tsignal is the width of the signal8,
while tsample is the sampling time.

The background sums up to the charge generated by the signal.

4.6 Digitization algorithm

The digitization algorithm implements the above modeled processes; it uses the
output of the GEANT4 MonteCarlo (see table 1 in appendix) as well as the geom-
etry parameters and physics parameters of the GEM tracker (see 2 in appendix)
and produces the TTree output (see table 3 in appendix).

Here are summarized the main steps of the algorithm, whose flow chart like is
presented in figure 11.

1. Project the track segment in the drift gap to the readout plane.

2. Assume nion (xri , y
r
i ) points Poisson distributed with mean nion, in the pro-

jected segment.

3. Such points are assumed to be spatially uniformly distributed (along the
segment); (implementation: extract nion values of length from 0 to Ls, being
Ls the length of the projected segment).

7The normalization factor is defined up to a common factor that includes the APV25 and the
ADC gains, at least.

8The signal width should be estimated at the over threshold time of the signal, where the
threshold is the sensibility of the electronics; as first approximation one can assume the Full
Width at One-Tenth Maximum.
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Figure 9: APV25 sampler output from [1].
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4. Each point is the center of a 2D Uniform distribution extending for 3 · σs
(from eq. 1).

5. The integral (total charge for each secondary) of the gaussian is given by G
distributed according to a gaussian function with mean G and σG given by
eq. 2 or a Furry function (see eq. 4).

6. Sum up all uniform spots (see above equation 6) centered in the projection
of the primary ionization pairs points.

7. Choose a rectangular window around the projected segment as suggested
above in section 4.4.

8. Integrate the window pixels to get the charge of each strip in x and y (note
that integration along one axis is continuous, while along the other is in
steps, see fig 8) and discussion above.

9. For each strip in the window take 3 consecutive 25 ns samples of the signal
according to eq. 4.5 starting at fixed time (or point in the signal, adding a
random gaussian jitter).

10. Repeat all the above steps for the background hits, except step 9, which
shall be replaced by:

(a) extract the number of background hits nbck according to a Poisson
distribution with mean rbck ·∆t where rbck is the background rate (in
principle space dependent!) and ∆t the effective time window (see 4.5).

(b) uniformly extract nbck times tribck between −tsignal and nsample · tsample
(c) for each strip take 3 consecutive samples starting at the random points

extracted in the previous item, relative to the “0” of the GEM signal

18



A Charge collection implemented

As represented in fig 8 the x-y strips of the COMPASS like 2D readout can be
modeled by a 2D regular grid of size Lx×Ly, each “pixel” being addressed by the
indexes k,m running in the ranges k = [0, Lx/a−1] and m = [0, Ly/b−1]). In this
representation the horizontal strips (top-layer, the y axis) are continuous while the
vertical strips (bottom-layer, the x axis) are interleaved with the horizontal strips.

Each strip can be represented by an index i (and j for the other axis); in this
scheme, the j strip is formed by the pixels ∀k,m = 2j, while the i strip is formed
by the pixels i = k, ∀(2m+ 1).

Each pixel has center at (xk, ym) = (x0 + a · k, y0 + b ·m), being a and b the
pitch along the two directions and x0 and y0 the offset that define the origin of
the coordinates (for example x0 = a/2 and y0 = b/2).

The gaussian sum of eq. 5 can be defined in a rectangular window (see fig. 8)
that includes the segment projection containing the (xri , y

r
i ) points; the coordinates

of the lower-left (xL, yL) and upper-right (xU , yU ) of this rectangle are:

xL = xrA − fσmaxs , yL = yrA − fσmaxs

and
xR = xrB + fσmaxs , yU = yrB + fσmaxs

where σmaxs =
√

2DLmax/vd (Lmax is the distance between the drift foil and the
readout plane) and xA,B, yA,B are the minimum and maximum values of xri and
yri coordinates, while f is the coverage factor (f = 2 should be reasonable).

For implementation purpose, instead of (xL, yL) and (xU , yU ) one considers
the closest (safer) pixel centers defined by (kL,mL) and (kU ,mU ) as: kL =
floor ((xL − x0)/a), mL = floor ((yL − y0)/b) and kU = ceil ((xU − x0)/a), mU =
ceil ((yU − y0)/b) (with the constraints on k and m range of validity).

The above indexes are used to define a 2D histogram H2(nk, xl, xr;nm, yb, yu)
where nk = kU−kL+1 and nm = mU−mL+1 and borders: xl = x0+a(kL−1/2),
xr = x0 + a(kU + 1/2) and yb = y0 + b(mL − 1/2), yu = y0 + b(mU + 1/2) and the
bin content is given by the charge:

C(k,m) =

∫ xk+a/2

xk−a/2
dx

∫ ym+b/2

ym−b/2
dy ·Ghit(x, y)

and therefore the charge collected by a i-strip is given by:

Ii =
∑
∀m

C(k = i, 2m+ 1) (7)
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Table 1: GEANT4 MonteCarlo physics hit parameters definition; these data are
used by the digitization; when applicable, the parameters are evaluated in the
local chamber. NOTE: name of the variables will be changed in agreement to the
ROOT code convention.

Physics Hit

hcID chamber index
htID particle ID entering the drift gap (htID = 1 is the primary particle)
hPar particle code
(hx, hy, hz) entrance point on the drift gap
(hxe, hye, hze) exit point on the drift gap
hedep energy deposited in the drift gap (∆E)
(hmx, hmy, hmz) entrance momentum on the drift gap
(hmxe, hmye, hmze) exit momentum on the drift gap
(hxro, hyro, hzro) entrance point on the readout foil

and the j-strip is given by:

Ij =
∑
∀k
C(k,m = 2j) (8)

B Data struture implementation

The different data structures refer to each others as shown in fig. 1 by the “ref
to” dashed lines, in order to permit to compare the reconstructed tracks to the
physics tracks; the implementation is done using the Entry of the TTree.
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Table 2: Geometry and physics parameters of the GEM chamber used in the
digitization.

Lmax drift to readout planes distance

Wi effective average ionization energy of the gas mixture
D diffusion coefficient of the gas mixture
vdrift mean drift speed of the secondary electrons

gi gain of each GEM foil (due to gas mixture and field in the GEM holes)

Table 3: Parameters definition of the digitized virtual strip

Virtual Strip

chamber chamber index
plane axis index
ns number of strips influenced by hit(s)
strip[ns] strip index array
charge[ns] total charge in strip
adc[ns][3] ADC sampled charge

sType type of strip (signal=0x1, background=0x2 ...)
pHit reference to the physics hit entry (or index)
pTrack reference to the physics track entry (to be implemented)



Table 4: Parameters definition of the mixed real strip (sums of virtual strips). Only
1 dimensional array used, due to some limitation/or not understood behavior in
ROOT/TTree

Real Strip

digi.gem.nch (nch for short) number of strips with signal
digi.gem.chamber[nch] chamber index
digi.gem.plane[nch] plane index of the strip
digi.gem.strip[nch] strip address in a given axis
digi.gem.adc1[nch] ADC first sampled value
digi.gem.adc2[nch] ADC first sampled value
digi.gem.adc3[nch] ADC first sampled value

digi.gem.type[nch] type of strip, register
digi.gem.charge[nch] total charge collected in strip
digi.gem.time1[nch] time of first sample
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