Baffle work

Rich Holmes 13 July 2015

- Current baffles ("More1") are based on ones designed for BaBar solenoid
- Never optimized for CLEO
- Limits imposed by current baffles not well understood
- Program: Study acceptances of baffles to see where improvements are possible

Geometric acceptance

- Generate e⁻ in 2 GeV < p < 6 GeV and 10° < θ < 50°.
 - Note there is acceptance for electron momenta down to about 1.3 GeV
- Vertex positions are target center, ends, and between.
- Plots are ratios of tracks passing through Kryptonite baffle to tracks produced in bins of p, θ.

Physics interest

 From proposal: Useful kinematics 22° < θ < 35°, x_{Bj} > 0.55, W² > 4 GeV², Q²
> 6 GeV² defines this stripe in p/θ space.

More1 baffle center vertex

 More1 e⁻ acceptance (target center) is reasonably well matched to kinematics.

 More1 e⁻ acceptance (target center) is reasonably well matched to kinematics.

More1 baffle upstream vertex

More1 baffle upstream/center vertex

More1 baffle downstream/center vertex

More1 baffle downstream vertex

• Quick fix: Eliminate inner rings on all baffles

- Probably could keep inner rings on all but most upstream baffles
- Better to extend slits/blocks inward (with careful choice of extended slit geometry)

Without inner rings

Shapes of odd numbered baffles $0^{\circ} < \phi < 24^{\circ}$ No inner rings

Horizontal (vertical) axis is x (y) coordinate

Shapes of odd numbered baffles $0^{\circ} < \phi < 24^{\circ}$ No inner rings

Horizontal (vertical) axis is $\phi(r)$ polar coordinate

e⁻ tracks generated uniform in *p* and θ with φ fixed (at 12°)

Cuts imposed: $x_{Bj} > 0.55$, $W^2 > 4$ GeV², $Q^2 > 6$ GeV², p > 2 GeV/ C^2

Plotted points are positions at *z* corresponding to front (red) and back (green) of each baffle plane (NO baffle actually present)

Upstream vertex 1202 1000 800

8 10 12 14 16 18 20

e- tracks generated uniform in *p* and θ with φ fixed (at 12°)

Cuts imposed: $x_{Bj} > 0.55$, $W^2 > 4$ GeV², Q^2 > 6 GeV², p > 2 GeV/c²

Plotted points are positions at front (red) and back (green) of each baffle plane

Upstream vertex

Shapes of slits for large θ look reasonable to give ~50% acceptance for good events. At small θ , cuts into acceptance.

Mid/upstream vertex

Middle vertex

200 2 4 6 8 10 12 14 16 18 20 22 24

4 6 8 10 12 14 16 18 20 22 24

Downstream vertex

For these plots, *e*- tracks generated uniform in *p*, θ, and φ

Same cuts imposed: $x_{Bj} > 0.55$, $W^2 > 4$ GeV², Q^2 > 6 GeV², p > 2 GeV/c²

Plotted points are positions at front (red) and back (green) of each baffle plane for only those tracks that get through all 11 Kryptonite baffles

Upstream vertex

Mid/upstream vertex

Middle vertex

θ limited by last baffle

5 vertex

5 vertex

Same for photons

Conclusions

- Downstream target acceptance is limited by upstream baffles' inner rings
- Small θ acceptance is reduced by slit shape design
- There are regions of the slits that contribute no acceptance for good events
- Straight through acceptance at low θ on high momentum side of slit

Extra

CLEO baffle

5555 more baffle

 $sqr1pr(3)^{*}pq(3)_{+}pq(3)^{*}pq(3)_{+}pq(3)^{*}pq(3)_{+}185(3,1415^{*}atard)(sqr1pr(3)^{*}pq(3)_{+}pq(3)^{*}pq(3)_{+$

 $sqrt[p+[0]^*p+[0]+py[0]^*p+[0]+pd[0]^*pd[0]+180/3.1415^*atard(sqrt(p+[0]^*p+[0]+py[0])*py[0],pd[0]) (rhits=24.6ptare(2)=-1014.4mt(2)=-1)$

Without inner rings

More1 baffle center vertex

Without inner rings

More1 baffle upstream vertex

More1 baffle upstream/center vertex

More1 baffle center vertex slices in angle

More1 baffle upstream vertex slices in angle

More1 baffle downstream vertex slices in angle

More1 baffle upstream vertex slices in p

More1 baffle center vertex slices in p

More1 baffle downstream vertex slices in p

Neutrals

 Geometric acceptance vs. θ for photons

For these plots, photons generated uniform in θ and φ

Plotted points are positions at front (red) and back (green) of each baffle plane *for only those photons that get through all 11 Kryptonite baffles*

Upstream vertex

200 E

4 6 8 10 12 14 16 18 20 22 24

Mid/upstream vertex

400 F 300F

300 E 200 E

6 8 10 12 14 16 18 20

Middle vertex

